Gears-C/src/renderer_vulkan.c

2357 lines
64 KiB
C

// ::Vulkan::Globals::Start::
static vRenderer v_Renderer = {
.state = {
.vk = {
.gfx_queue_idx = UINT32_MAX,
.tfer_queue_idx = UINT32_MAX,
},
.swapchain = {
.format = INT_MAX,
.color_space = INT_MAX,
.present_mode = INT_MAX,
},
},
};
#ifdef BUILD_DEBUG
RENDERDOC_API_1_1_2 *v_rdoc_api = NULL;
b32 v_rdoc_captured = false;
#endif
// ::Vulkan::Globals::End::
// ::Vulkan::Includes::CFiles::Start::
#include "renderer_vulkan_public.c"
// ::Vulkan::Includes::CFiles::End::
// ::Vulkan::Util::Functions::Start::
static inline u32 vFrameIndex()
{
return v_Renderer.state.renderer.frame_count % FRAME_OVERLAP;
}
static inline u32 vFrameNextIndex()
{
return (v_Renderer.state.renderer.frame_count + 1) % FRAME_OVERLAP;
}
static inline VkCommandBuffer vFrameCmdBuf()
{
return v_Renderer.frame_handles[vFrameIndex()].buffer;
}
static inline VkFence vFrameRenderFence()
{
return v_Renderer.frame_handles[vFrameIndex()].r_fence;
}
static inline VkImage vFrameImage()
{
return v_Renderer.images.sc.data[v_Renderer.state.vk.image_idx].image.image;
}
static inline Arena *vFrameArena()
{
return v_Renderer.mem.frame_arenas[vFrameIndex()];
}
static inline VkSemaphore vFrameRenderSem()
{
return v_Renderer.frame_handles[vFrameIndex()].r_sem;
}
static inline VkSemaphore vFrameSwapSem()
{
return v_Renderer.frame_handles[vFrameIndex()].sc_sem;
}
static inline vBufferPtrArray *vFrameBuffers()
{
return v_Renderer.buffers.frame_buffers + vFrameIndex();
}
static inline b8 *vFrameTexDestroyQueue()
{
return v_Renderer.buffers.tex_destroy_queue.data[vFrameIndex()];
}
static inline b8 *vFrameNextTexDestroyQueue()
{
return v_Renderer.buffers.tex_destroy_queue.data[vFrameNextIndex()];
}
static inline void vImageCopyToImage(VkCommandBuffer cmd, VkImage src, VkImage dst, VkExtent2D src_ext, VkExtent2D dst_ext)
{
VkImageBlit2 blit = {
.sType = STYPE(IMAGE_BLIT_2),
.srcOffsets = {
{0},
{ .x = (i32)src_ext.width, .y = (i32)src_ext.height, .z = 1 },
},
.dstOffsets = {
{0},
{ .x = (i32)dst_ext.width, .y = (i32)dst_ext.height, .z = 1 },
},
.srcSubresource = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseArrayLayer = 0,
.layerCount = 1,
.mipLevel = 0,
},
.dstSubresource = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseArrayLayer = 0,
.layerCount = 1,
.mipLevel = 0,
},
};
VkBlitImageInfo2 blit_info = {
.sType = STYPE(BLIT_IMAGE_INFO_2),
.srcImage = src,
.srcImageLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.dstImage = dst,
.dstImageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.filter = VK_FILTER_LINEAR,
.regionCount = 1,
.pRegions = &blit,
};
vkCmdBlitImage2(cmd, &blit_info);
}
static inline void vImageTransitionLayout(VkCommandBuffer cmd, VkImage img, VkImageLayout curr, VkImageLayout new)
{
VkImageMemoryBarrier2 barrier = {
.sType = STYPE(IMAGE_MEMORY_BARRIER_2),
.srcStageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
.srcAccessMask = VK_ACCESS_2_MEMORY_WRITE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
.dstAccessMask = VK_ACCESS_2_MEMORY_WRITE_BIT | VK_ACCESS_2_MEMORY_READ_BIT,
.oldLayout = curr,
.newLayout = new,
.image = img,
.subresourceRange = {
.aspectMask = new == VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = VK_REMAINING_MIP_LEVELS,
.baseArrayLayer = 0,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
};
VkDependencyInfo dep_info = {
.sType = STYPE(DEPENDENCY_INFO),
.imageMemoryBarrierCount = 1,
.pImageMemoryBarriers = &barrier,
};
vkCmdPipelineBarrier2(cmd, &dep_info);
}
static inline void vImageTransition(VkCommandBuffer cmd, vImage *img, VkImageLayout new)
{
vImageTransitionLayout(cmd, img->image, img->layout, new);
img->layout = new;
}
// ::Vulkan::Util::Functions::End::
// ::Vulkan::Rendering::Functions::Start::
static void vRenderingBegin()
{
VkCommandBuffer cmd = vFrameCmdBuf();
VkImage curr_img = v_Renderer.images.sc.data[v_Renderer.state.vk.image_idx].image.image;
vImageTransition(cmd, &v_Renderer.images.draw.image, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
vImageTransition(cmd, &v_Renderer.images.depth.image, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL);
vImageTransitionLayout(cmd, curr_img, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkRenderingAttachmentInfo col_attach_info = {
.sType = STYPE(RENDERING_ATTACHMENT_INFO),
.imageView = v_Renderer.images.draw.view,
.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.clearValue = { { 0.2f, 0.2f, 0.2f, 1.0f } },
};
VkRenderingAttachmentInfo depth_attach_info = {
.sType = STYPE(RENDERING_ATTACHMENT_INFO),
.imageView = v_Renderer.images.depth.view,
.imageLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
};
VkRenderingInfo render_info = {
.sType = STYPE(RENDERING_INFO),
.layerCount = 1,
.colorAttachmentCount = 1,
.pColorAttachments = &col_attach_info,
.pDepthAttachment = &depth_attach_info,
.renderArea = {
.extent = {
.width = v_Renderer.state.swapchain.extent.width,
.height = v_Renderer.state.swapchain.extent.height,
},
},
};
vkCmdBeginRendering(cmd, &render_info);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, v_Renderer.handles.pipeline_layout, 0, vDT_MAX, v_Renderer.handles.desc_sets, 0, NULL);
}
// ::Vulkan::Rendering::Functions::End::
// ::Vulkan::ImmediateSubmit::Functions::Start::
static b32 vImmSubmitBegin(VkDevice device, VkFence fence, VkCommandBuffer cmd)
{
b32 success = true;
VkFence f = fence;
VkResult result = vkResetFences(device, 1, &f);
if (result != VK_SUCCESS)
{
Printfln("vkResetFences failure: %s", vVkResultStr(result));
success = false;
}
if (success)
{
result = vkResetCommandBuffer(cmd, 0);
if (result != VK_SUCCESS)
{
Printfln("vkResetCommandBuffer failure: %s", vVkResultStr(result));
success = false;
}
}
if (success)
{
VkCommandBufferBeginInfo buf_info = {
.sType = STYPE(COMMAND_BUFFER_BEGIN_INFO),
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
result = vkBeginCommandBuffer(cmd, &buf_info);
if (result != VK_SUCCESS)
{
Printfln("vkBeginCommandBuffer failure: %s", vVkResultStr(result));
success = false;
}
}
return success;
}
static b32 vImmSubmitFinish(VkDevice device, VkFence fence, VkCommandBuffer cmd, VkQueue queue)
{
b32 success = true;
VkFence f = fence;
VkResult result = vkEndCommandBuffer(cmd);
if (result != VK_SUCCESS)
{
Printfln("vkEndCommandBuffer imm failure: %s", vVkResultStr(result));
success = false;
}
if (success)
{
VkCommandBufferSubmitInfo cmd_submit_info = {
.sType = STYPE(COMMAND_BUFFER_SUBMIT_INFO),
.commandBuffer = cmd,
};
VkSubmitInfo2 submit_info = {
.sType = STYPE(SUBMIT_INFO_2),
.commandBufferInfoCount = 1,
.pCommandBufferInfos = &cmd_submit_info,
};
result = vkQueueSubmit2(queue, 1, &submit_info, f);
if (result != VK_SUCCESS)
{
Printfln("vkQueueSubmit2 imm failure: %s", vVkResultStr(result));
success = false;
}
}
if (success)
{
result = vkWaitForFences(device, 1, &f, true, 9999999999);
if (result != VK_SUCCESS)
{
Printfln("vkWaitForFences imm failure: %s", vVkResultStr(result));
success = false;
}
}
return success;
}
// ::Vulkan::ImmediateSubmit::Functions::End::
// ::Vulkan::Swapchain::Functions::Start::
static void vSwapchainResize()
{
vkDeviceWaitIdle(v_Renderer.handles.device);
vSwapchainDestroy();
vDrawImagesDestroy();
// TODO: fix
//v_Renderer.state.swapchain.extent.width = v_Renderer.state.renderer.width;
//v_Renderer.state.swapchain.extent.height = v_Renderer.state.renderer.height;
Assert(vSwapchainInit(), "Unable to recreate swapchain");
Assert(vDrawImagesInit(), "Unable to recreate draw images");
}
// ::Vulkan::Swapchain::Functions::End::
// ::Vulkan::Images::Functions::Start::
static vImageView *vImageViewCreate(TexMeta meta)
{
vImageView *view = FLMemAlloc(sizeof(vImageView));
Assert(vImageViewInit(view, meta.w, meta.h, meta.ch), "vImageViewCreate failure: vImage");
return view;
}
static vTransfer *vTextureTransferInit(Arena *arena, u32 asset_id, VkImage image, rawptr bytes, TexMeta *meta)
{
vTransfer *transfer = MakeArray(arena, vTransfer, 1);
transfer->type = vTT_IMAGE;
transfer->data = bytes;
transfer->w = meta->w;
transfer->h = meta->h;
transfer->ch = meta->ch;
transfer->asset_id = asset_id;
transfer->image = image;
return transfer;
}
static b32 vImageViewInit(vImageView *view, u32 width, u32 height, u32 channels)
{
b32 success = true;
VmaAllocationCreateInfo alloc_create_info = {
.usage = VMA_MEMORY_USAGE_GPU_ONLY,
.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
};
VkImageCreateInfo image_info = {
.sType = STYPE(IMAGE_CREATE_INFO),
.imageType = VK_IMAGE_TYPE_2D,
.mipLevels = 1,
.arrayLayers = 1,
.format = VK_FORMAT_R8G8B8A8_SRGB,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.samples = VK_SAMPLE_COUNT_1_BIT,
.extent = {
.width = width,
.height = height,
.depth = 1,
},
};
if (!v_Renderer.state.vk.single_queue)
{
image_info.sharingMode = VK_SHARING_MODE_CONCURRENT;
image_info.queueFamilyIndexCount = 2;
image_info.pQueueFamilyIndices = (u32[]){v_Renderer.state.vk.gfx_queue_idx, v_Renderer.state.vk.tfer_queue_idx};
}
VkResult result = vmaCreateImage(v_Renderer.handles.vma_alloc, &image_info, &alloc_create_info,
&view->image.image, &view->image.alloc, NULL);
if (result != VK_SUCCESS)
{
Printfln("vImageViewInit error: vmaCreateImage failure: %s", vVkResultStr(result));
success = false;
}
VkImageViewCreateInfo view_info = {
.sType = STYPE(IMAGE_VIEW_CREATE_INFO),
.image = view->image.image,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = VK_FORMAT_R8G8B8A8_SRGB,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.levelCount = 1,
.layerCount = 1,
},
};
result = vkCreateImageView(v_Renderer.handles.device, &view_info, NULL, &view->view);
if (result != VK_SUCCESS)
{
Printfln("vImageViewInit error: vkCreateImageView failure: %s", vVkResultStr(result));
success = false;
}
return success;
}
static void vTextureCleanUp()
{
VkDevice device = v_Renderer.handles.device;
VmaAllocator vma_alloc = v_Renderer.handles.vma_alloc;
HashTable *table = &v_Renderer.buffers.images;
b8 *queue = vFrameTexDestroyQueue();
// NOTE: might need a mutex here at some point, check if crashes related to image access
for (u64 i = 0; i < TEXTURE_ASSET_MAX; i++)
{
if (queue[i])
{
rDescHandle handle = vDescHandlePop(vDT_SAMPLED_IMAGE, (u32)i);
vDescIndexPush(vDT_SAMPLED_IMAGE, handle.desc_index);
vImageView *view = vImagePop(i);
Assert(view != NULL, "rTextureUnload failure: value not in hash table");
vkDestroyImageView(device, view->view, NULL);
vmaDestroyImage(vma_alloc, view->image.image, view->image.alloc);
FLMemFree(view);
queue[i] = false;
}
}
pAtomicSignalFenceSeqCst();
}
static void vImagePush(TextureAsset asset_id, vImageView *view)
{
HashTablePushU64Rawptr(&v_Renderer.buffers.images, asset_id, view);
}
static vImageView *vImagePop(TextureAsset asset_id)
{
return (vImageView *)HashTableDeleteU64Rawptr(&v_Renderer.buffers.images, asset_id);
}
static vImageView *vImageSearch(TextureAsset asset_id)
{
vImageView *view = NULL;
HashTable *table = &v_Renderer.buffers.images;
KeyValuePair *pair = HashTableSearchU64(table, asset_id);
if (pair != NULL)
{
view = (vImageView *)pair->value_rawptr;
}
return view;
}
// ::Vulkan::Images::Functions::End::
// ::Vulkan::Descriptors::Functions::Start::
static void vDescPushImageAndHandle(rDescHandle handle, vImageView *view)
{
vDescHandlePush(vDT_SAMPLED_IMAGE, handle);
vImagePush(handle.asset_id, view);
}
static void vDescPushModelAndHandle(rDescHandle handle, vModelBuffers *buffer)
{
vDescHandlePush(vDT_MESH, handle);
vModelPush(handle.asset_id, buffer);
}
// TODO: batch descriptor writes
static u32 vDescPushImageDesc(vImageView *view)
{
u32 index = vDescIndexPop(vDT_SAMPLED_IMAGE);
VkDescriptorImageInfo image_info = {
.imageView = view->view,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
};
VkWriteDescriptorSet desc_write = {
.sType = STYPE(WRITE_DESCRIPTOR_SET),
.dstSet = v_Renderer.handles.desc_sets[vDT_SAMPLED_IMAGE],
.dstBinding = 0,
.descriptorCount = 1,
.dstArrayElement = index,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = &image_info,
};
vkUpdateDescriptorSets(v_Renderer.handles.device, 1, &desc_write, 0, NULL);
return index;
}
static u32 vDescPushMeshDesc(vMeshBuffer *buffer)
{
u32 index = vDescIndexPop(vDT_MESH);
VkDescriptorBufferInfo buffer_info = {
.buffer = buffer->uniform.buffer,
.offset = 0,
.range = VK_WHOLE_SIZE,
};
VkWriteDescriptorSet desc_write = {
.sType = STYPE(WRITE_DESCRIPTOR_SET),
.dstSet = v_Renderer.handles.desc_sets[vDT_MESH],
.dstBinding = 0,
.descriptorCount = 1,
.dstArrayElement = index,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.pBufferInfo = &buffer_info,
};
vkUpdateDescriptorSets(v_Renderer.handles.device, 1, &desc_write, 0, NULL);
return index;
}
static void vDescIndexPush(vDescType type, u32 index)
{
vDescBindings *bindings = v_Renderer.desc_bindings + type;
Assert(bindings->free_count < DESC_MAX_BINDINGS-1, "vDescIndexPush failure: free_count equal to DESC_MAX_BINDINGS-1");
bindings->free[bindings->free_count] = index;
bindings->free_count += 1;
}
static u32 vDescIndexPop(vDescType type)
{
vDescBindings *bindings = v_Renderer.desc_bindings + type;
Assert(bindings->free_count > 0, "vDescIndexPop failure: free_count is 0");
bindings->free_count -= 1;
return bindings->free[bindings->free_count];
}
static rDescHandle vDescHandleSearch(vDescType type, u32 asset_id)
{
rDescHandle asset_info = {
.asset_id = UINT32_MAX,
};
HashTable *table = &v_Renderer.desc_bindings[type].lookup_table;
KeyValuePair *kv_pair = HashTableSearchU64(table, asset_id);
if (kv_pair != NULL)
{
asset_info.asset_id = kv_pair->value_u64_split.upper;
asset_info.desc_index = kv_pair->value_u64_split.lower;
}
return asset_info;
}
static void vDescHandlePush(vDescType type, rDescHandle handle)
{
HashTable *table = &v_Renderer.desc_bindings[type].lookup_table;
HashTablePushU64U64Split(table, handle.asset_id, handle.asset_id, handle.desc_index);
}
static rDescHandle vDescHandlePop(vDescType type, u32 asset_id)
{
HashTable *table = &v_Renderer.desc_bindings[type].lookup_table;
U64Split split = HashTableDeleteU64U64Split(table, (u64)asset_id);
Assert(split.upper != UINT32_MAX, "vDescHandlePop failure: unable to find asset handle");
rDescHandle handle = {
.asset_id = split.upper,
.desc_index = split.lower,
};
return handle;
}
static void vDescHandleDelete(vDescType type, u32 asset_id)
{
HashTable *table = &v_Renderer.desc_bindings[type].lookup_table;
HashTableDeleteU64(table, asset_id);
}
// ::Vulkan::Descriptors::Functions::End::
// ::Vulkan::Buffers::Functions::Start::
static vTransfer *vMeshTransferInit(Arena *arena, u32 asset_id, vMeshBuffer *mesh, rawptr bytes, u64 size)
{
vTransfer *transfer = MakeArray(arena, vTransfer, 1);
transfer->type = vTT_MESH;
transfer->data = bytes;
transfer->size = size;
transfer->mesh = mesh;
transfer->asset_id = asset_id;
return transfer;
}
static vTransfer *vBufferTransferInit(Arena *arena, u32 asset_id, vBuffer *index, rawptr bytes, u64 size)
{
vTransfer *transfer = MakeArray(arena, vTransfer, 1);
transfer->type = vTT_BUFFER;
transfer->data = bytes;
transfer->asset_id = asset_id;
transfer->size = size;
transfer->buffer = index->buffer;
return transfer;
}
static VkResult vBufferCreate(vBuffer* buf, rRenderBufferType type, u64 size)
{
Assert(type != rRBT_NONE, "vBufferCreate: rRenderBufferType must not be rRBT_NONE");
VkResult result;
u32 gfx_queue = v_Renderer.state.vk.gfx_queue_idx;
u32 tfer_queue = v_Renderer.state.vk.tfer_queue_idx;
VmaAllocator alloc = v_Renderer.handles.vma_alloc;
VkBufferCreateInfo buffer_info = {
.sType = STYPE(BUFFER_CREATE_INFO),
.size = size,
};
VmaAllocationCreateInfo alloc_info = {
.usage = VMA_MEMORY_USAGE_UNKNOWN,
.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT,
};
if (BitEq(type, rRBT_VERTEX))
{
buffer_info.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
}
else if (BitEq(type, rRBT_INDEX))
{
buffer_info.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
}
else if (BitEq(type, rRBT_UNIFORM))
{
buffer_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
}
else if (BitEq(type, rRBT_STAGING))
{
buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
}
else if (BitEq(type, rRBT_STORAGE))
{
buffer_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
}
if (BitEq(type, rRBT_ADDR))
{
buffer_info.usage |= VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
}
if ((type & rRBT_HOST) == rRBT_HOST || type == rRBT_STAGING)
{
alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
alloc_info.preferredFlags = VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
}
else
{
buffer_info.usage |= VK_BUFFER_USAGE_TRANSFER_DST_BIT;
alloc_info.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
}
if (tfer_queue != gfx_queue)
{
buffer_info.sharingMode = VK_SHARING_MODE_CONCURRENT;
buffer_info.queueFamilyIndexCount = 2;
buffer_info.pQueueFamilyIndices = (u32[]){gfx_queue, tfer_queue};
}
VmaAllocationInfo vma_info;
result = vmaCreateBuffer(alloc, &buffer_info, &alloc_info, &buf->buffer, &buf->alloc, &vma_info);
if (result != VK_SUCCESS)
{
Printfln("vmaCreateBuffer failure: %s", vVkResultStr(result));
}
return result;
}
static rawptr vMapBuffer(VmaAllocation alloc)
{
rawptr ptr;
vmaMapMemory(v_Renderer.handles.vma_alloc, alloc, &ptr);
return ptr;
}
static void vModelPush(ModelAsset asset_id, vModelBuffers *buffer)
{
HashTablePushU64Rawptr(&v_Renderer.buffers.buffers, asset_id, buffer);
}
static vModelBuffers *vModelPop(ModelAsset asset_id)
{
return (vModelBuffers *)HashTableDeleteU64Rawptr(&v_Renderer.buffers.buffers, asset_id);
}
static vModelBuffers *vModelSearch(ModelAsset asset_id)
{
vModelBuffers *buffers = NULL;
KeyValuePair *pair = HashTableSearchU64(&v_Renderer.buffers.buffers, asset_id);
if (pair != NULL)
{
buffers = (vModelBuffers *)pair->value_rawptr;
}
return buffers;
}
// ::Vulkan::Buffers::Functions::End::
// ::Vulkan::Init::Functions::Start::
static b32 vInitInstance()
{
b32 success = true;
Assert(vGlobalFunctionsInit(), "Unable to load vulkan functions");
VkResult result = vkCreateInstance(&inst_info, NULL, &v_Renderer.handles.inst);
if (result != VK_SUCCESS)
{
success = false;
Printfln("vkCreateInstance failure: %s", vVkResultStr(result));
}
return success;
}
static b32 vRenderDocInit()
{
pLibrary lib; pFunction fn; int result = 0;
b32 found = pLibraryLoad(RENDERDOC_LIB, &lib);
if (found)
{
found = pFunctionLoad("RENDERDOC_GetAPI", &lib, &fn);
if (found)
{
pRENDERDOC_GetAPI RENDERDOC_GetAPI = (pRENDERDOC_GetAPI)fn.fn;
result = RENDERDOC_GetAPI(eRENDERDOC_API_Version_1_1_2, (void **)&v_rdoc_api);
}
}
return result;
}
static void vEnableDebug()
{
if (vValidationSupported())
{
Assert(vkCreateDebugUtilsMessengerEXT(v_Renderer.handles.inst, &debug_msg_info, NULL, &v_Renderer.handles.debug) == VK_SUCCESS,
"Unable to initialize debug messenger");
}
else
{
Printfln("Validation layers not supported, continuing without.");
}
}
static void vArenasInit()
{
v_Renderer.mem.perm_arena = ArenaCreateDebug(MB(16), __LINE__);
for (u32 i = 0; i < FRAME_OVERLAP; i++)
{
v_Renderer.mem.frame_arenas[i] = ArenaCreateDebug(MB(8), i);
}
}
static b32 vVmaAllocatorInit()
{
VmaVulkanFunctions vk_functions = {
.vkGetInstanceProcAddr = vkGetInstanceProcAddr,
.vkGetDeviceProcAddr = vkGetDeviceProcAddr,
};
vma_create_info.pVulkanFunctions = &vk_functions;
vma_create_info.physicalDevice = v_Renderer.handles.phys_device;
vma_create_info.device = v_Renderer.handles.device;
vma_create_info.instance = v_Renderer.handles.inst;
VkResult result = vmaCreateAllocator(&vma_create_info, &v_Renderer.handles.vma_alloc);
if (result != VK_SUCCESS)
{
Printf("vmaCreateAllocator failure: %d", result);
}
return result == VK_SUCCESS;
}
static b32 vQueueCheckSurfaceSupport(i32 index, VkPhysicalDevice device, VkSurfaceKHR surface)
{
b32 surface_supported;
vkGetPhysicalDeviceSurfaceSupportKHR(device, (u32)index, surface, &surface_supported);
return surface_supported;
}
static vDeviceQueues vQueueCheckSupport(VkPhysicalDevice device, VkSurfaceKHR surface)
{
vDeviceQueues queues = { .graphics = -1, .transfer = -1 };
Arena *arena = vFrameArena();
u32 queue_count;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queue_count, NULL);
VkQueueFamilyProperties *families = MakeArray(arena, VkQueueFamilyProperties, queue_count);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queue_count, families);
if (queue_count == 1 &&
BitEq(families[0].queueFlags, VK_QUEUE_TRANSFER_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT) &&
families[0].queueCount == 1)
{
queues.graphics = queues.transfer = 0;
queues.single_queue = true;
}
else
{
b8 sparse_binding = false;
b8 transfer_only = false;
for (i32 i = 0; i < queue_count; i++)
{
if (queues.graphics < 0 && vQueueCheckSurfaceSupport(i, device, surface) && BitEq(families[i].queueFlags, VK_QUEUE_GRAPHICS_BIT))
{
queues.graphics = i;
continue;
}
if (BitEq(families[i].queueFlags, VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT) && !BitEq(families[i].queueFlags, VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT))
{
sparse_binding = true;
transfer_only = true;
queues.transfer = i;
continue;
}
if (BitEq(families[i].queueFlags, VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT) && !(sparse_binding && transfer_only))
{
sparse_binding = true;
queues.transfer = i;
continue;
}
if (BitEq(families[i].queueFlags, VK_QUEUE_TRANSFER_BIT) && !BitEq(families[i].queueFlags, VK_QUEUE_COMPUTE_BIT) && !sparse_binding)
{
transfer_only = true;
queues.transfer = i;
continue;
}
if (BitEq(families[i].queueFlags, VK_QUEUE_TRANSFER_BIT) && !sparse_binding && !transfer_only)
queues.transfer = i;
}
if (queues.transfer < 0)
queues.transfer = queues.graphics;
}
return queues;
}
static b32 vDeviceCheckPropertiesSupport(VkPhysicalDevice device, VkSurfaceKHR surface, b32 *discrete)
{
b32 success = false;
Arena *arena = vFrameArena();
VkPhysicalDeviceProperties properties = {0};
vkGetPhysicalDeviceProperties(device, &properties);
if (VK_API_VERSION_MINOR(properties.apiVersion) >= 3)
{
u32 ext_count;
vkEnumerateDeviceExtensionProperties(device, NULL, &ext_count, NULL);
VkExtensionProperties *ext_properties = ArenaAlloc(arena, sizeof(VkExtensionProperties) * ext_count);
vkEnumerateDeviceExtensionProperties(device, NULL, &ext_count, ext_properties);
i32 matched = 0;
for (u32 i = 0; i < ext_count; i++) {
for (i32 j = 0; j < Len(device_extensions); j++) {
if (StrEq(ext_properties[i].extensionName, device_extensions[j])) {
matched++;
break;
}
}
}
if (matched == Len(device_extensions))
{
u32 fmt_count, present_count;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &fmt_count, NULL);
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &present_count, NULL);
*discrete = properties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU;
success = fmt_count && present_count;
}
}
return success;
}
static b32 vDeviceCheckFeatureSupport(VkPhysicalDevice device)
{
VkPhysicalDeviceFeatures2 features2 = { .sType = STYPE(PHYSICAL_DEVICE_FEATURES_2) };
VkPhysicalDeviceVulkan12Features features_12 = { .sType = STYPE(PHYSICAL_DEVICE_VULKAN_1_2_FEATURES) };
VkPhysicalDeviceVulkan13Features features_13 = { .sType = STYPE(PHYSICAL_DEVICE_VULKAN_1_3_FEATURES) };
features2.pNext = &features_12;
vkGetPhysicalDeviceFeatures2(device, &features2);
features2.pNext = &features_13;
vkGetPhysicalDeviceFeatures2(device, &features2);
VkPhysicalDeviceFeatures features = features2.features;
b32 result = true;
result &= (b32)features.shaderUniformBufferArrayDynamicIndexing;
result &= (b32)features.shaderSampledImageArrayDynamicIndexing;
result &= (b32)features.shaderStorageBufferArrayDynamicIndexing;
result &= (b32)features.shaderStorageImageArrayDynamicIndexing;
result &= (b32)features.samplerAnisotropy;
result &= (b32)features_12.descriptorIndexing;
result &= (b32)features_12.bufferDeviceAddress;
result &= (b32)features_12.descriptorBindingUniformBufferUpdateAfterBind;
result &= (b32)features_12.descriptorBindingSampledImageUpdateAfterBind;
result &= (b32)features_12.descriptorBindingStorageImageUpdateAfterBind;
result &= (b32)features_12.descriptorBindingStorageBufferUpdateAfterBind;
result &= (b32)features_12.descriptorBindingPartiallyBound;
result &= (b32)features_12.runtimeDescriptorArray;
result &= (b32)features_12.shaderSampledImageArrayNonUniformIndexing;
result &= (b32)features_12.shaderUniformBufferArrayNonUniformIndexing;
result &= (b32)features_13.synchronization2;
result &= (b32)features_13.dynamicRendering;
return result;
}
static b32 vDeviceInit()
{
VkInstance inst = v_Renderer.handles.inst;
VkSurfaceKHR surface = v_Renderer.handles.surface;
Arena *arena = vFrameArena();
u32 device_count;
vkEnumeratePhysicalDevices(inst, &device_count, NULL);
VkPhysicalDevice *devices = ArenaAlloc(arena, sizeof(VkPhysicalDevice) * device_count);
vkEnumeratePhysicalDevices(inst, &device_count, devices);
b32 discrete_device = false;
vDeviceQueues queues = {0};
VkPhysicalDevice phys_device = NULL;
for (u32 i = 0; i < device_count; i++) {
vDeviceQueues current_queues = vQueueCheckSupport(devices[i], surface);
b32 discrete = false;
if (current_queues.graphics < 0)
continue;
if (!vDeviceCheckPropertiesSupport(devices[i], surface, &discrete))
continue;
if (discrete_device && !discrete)
continue;
if (!vDeviceCheckFeatureSupport(devices[i]))
continue;
discrete_device = discrete;
queues = current_queues;
phys_device = devices[i];
if (discrete_device && queues.graphics != queues.transfer)
break;
}
b32 success = false;
if (phys_device != NULL)
{
VkDeviceQueueCreateInfo queue_info[2] = {0};
f32 priority = 1.0f;
u32 count = 1;
u32 transfer_queue_index = 0;
queue_info[0].sType = STYPE(DEVICE_QUEUE_CREATE_INFO);
queue_info[0].queueFamilyIndex = queues.graphics;
queue_info[0].queueCount = 1;
queue_info[0].pQueuePriorities = &priority;
queue_info[0].flags = 0;
if (!queues.single_queue) {
queue_info[1].sType = STYPE(DEVICE_QUEUE_CREATE_INFO);
queue_info[1].queueFamilyIndex = queues.transfer;
queue_info[1].queueCount = 1;
queue_info[1].pQueuePriorities = &priority;
queue_info[1].flags = 0;
if (queues.transfer == queues.graphics)
transfer_queue_index = 1;
count++;
}
device_info.queueCreateInfoCount = count;
device_info.pQueueCreateInfos = &queue_info[0];
VkResult result = vkCreateDevice(phys_device, &device_info, NULL, &v_Renderer.handles.device);
if (result != VK_SUCCESS) {
Printf("vkCreateDevice failure: %d", result);
}
else
{
Assert(vDeviceFunctionsInit(), "Failed to initialize device functions");
vkGetDeviceQueue(
v_Renderer.handles.device,
queues.graphics,
0,
&queues.graphics_queue);
vkGetDeviceQueue(
v_Renderer.handles.device,
queues.transfer,
transfer_queue_index,
&queues.transfer_queue);
v_Renderer.handles.phys_device = phys_device;
v_Renderer.handles.gfx_queue = queues.graphics_queue;
v_Renderer.handles.tfer_queue = queues.transfer_queue;
v_Renderer.state.vk.gfx_queue_idx = queues.graphics;
v_Renderer.state.vk.tfer_queue_idx = queues.transfer;
success = true;
}
}
return success;
}
static b32 vGlobalFunctionsInit()
{
b32 result = vLibraryLoad();
if (result)
{
INIT_FN(vkGetInstanceProcAddr);
INIT_FN(vkEnumerateInstanceLayerProperties);
INIT_FN(vkCreateInstance);
}
return result;
}
static b32 vInstanceFunctionsInit()
{
VkInstance instance = v_Renderer.handles.inst;
#ifdef __linux__
{
INIT_INST_FN(vkCreateXcbSurfaceKHR);
}
#elif _WIN32
{
INIT_INST_FN(vkCreateWin32SurfaceKHR);
}
#endif
#ifdef BUILD_DEBUG
{
INIT_INST_FN(vkCreateDebugUtilsMessengerEXT);
INIT_INST_FN(vkDestroyDebugUtilsMessengerEXT);
}
#endif
INIT_INST_FN(vkEnumeratePhysicalDevices);
INIT_INST_FN(vkGetPhysicalDeviceQueueFamilyProperties);
INIT_INST_FN(vkGetPhysicalDeviceSurfaceSupportKHR);
INIT_INST_FN(vkCreateDevice);
INIT_INST_FN(vkGetPhysicalDeviceProperties);
INIT_INST_FN(vkGetPhysicalDeviceFeatures2);
INIT_INST_FN(vkGetPhysicalDeviceSurfaceFormatsKHR);
INIT_INST_FN(vkGetPhysicalDeviceSurfacePresentModesKHR);
INIT_INST_FN(vkEnumerateDeviceExtensionProperties);
INIT_INST_FN(vkGetDeviceProcAddr);
INIT_INST_FN(vkDestroyInstance);
INIT_INST_FN(vkDestroySurfaceKHR);
INIT_INST_FN(vkGetPhysicalDeviceSurfaceCapabilitiesKHR);
INIT_INST_FN(vkGetPhysicalDeviceImageFormatProperties);
return true;
}
static b32 vDeviceFunctionsInit() {
VkDevice device = v_Renderer.handles.device;
INIT_DEV_FN(vkCreateSwapchainKHR);
INIT_DEV_FN(vkCreateImage);
INIT_DEV_FN(vkCreateImageView);
INIT_DEV_FN(vkGetSwapchainImagesKHR);
INIT_DEV_FN(vkGetDeviceQueue);
INIT_DEV_FN(vkCreateSemaphore);
INIT_DEV_FN(vkAllocateCommandBuffers);
INIT_DEV_FN(vkCreateCommandPool);
INIT_DEV_FN(vkCreateFence);
INIT_DEV_FN(vkCreateDescriptorPool);
INIT_DEV_FN(vkCreateDescriptorSetLayout);
INIT_DEV_FN(vkAllocateDescriptorSets);
INIT_DEV_FN(vkCreatePipelineLayout);
INIT_DEV_FN(vkResetDescriptorPool);
INIT_DEV_FN(vkCreateShaderModule);
INIT_DEV_FN(vkCreateGraphicsPipelines);
INIT_DEV_FN(vkCreateComputePipelines);
INIT_DEV_FN(vkUpdateDescriptorSets);
INIT_DEV_FN(vkDestroyDevice);
INIT_DEV_FN(vkDestroyDescriptorPool);
INIT_DEV_FN(vkDestroySwapchainKHR);
INIT_DEV_FN(vkDestroyImage);
INIT_DEV_FN(vkDestroyImageView);
INIT_DEV_FN(vkDestroyCommandPool);
INIT_DEV_FN(vkDestroySemaphore);
INIT_DEV_FN(vkDestroyFence);
INIT_DEV_FN(vkDestroyPipelineLayout);
INIT_DEV_FN(vkDestroyPipeline);
INIT_DEV_FN(vkWaitForFences);
INIT_DEV_FN(vkBeginCommandBuffer);
INIT_DEV_FN(vkEndCommandBuffer);
INIT_DEV_FN(vkAcquireNextImageKHR);
INIT_DEV_FN(vkCmdBindPipeline);
INIT_DEV_FN(vkCmdBindDescriptorSets);
INIT_DEV_FN(vkCmdDispatch);
INIT_DEV_FN(vkCmdBeginRendering);
INIT_DEV_FN(vkCmdEndRendering);
INIT_DEV_FN(vkCmdSetViewport);
INIT_DEV_FN(vkCmdSetScissor);
INIT_DEV_FN(vkCmdPushConstants);
INIT_DEV_FN(vkCmdBindIndexBuffer);
INIT_DEV_FN(vkCmdBindVertexBuffers);
INIT_DEV_FN(vkCmdDrawIndexed);
INIT_DEV_FN(vkCmdBlitImage2);
INIT_DEV_FN(vkCmdPipelineBarrier2);
INIT_DEV_FN(vkCmdCopyBufferToImage);
INIT_DEV_FN(vkCmdCopyBuffer);
INIT_DEV_FN(vkQueueSubmit2);
INIT_DEV_FN(vkResetFences);
INIT_DEV_FN(vkResetCommandBuffer);
INIT_DEV_FN(vkFreeCommandBuffers);
INIT_DEV_FN(vkDestroyDescriptorSetLayout);
INIT_DEV_FN(vkDestroyShaderModule);
INIT_DEV_FN(vkQueuePresentKHR);
INIT_DEV_FN(vkCmdDraw);
INIT_DEV_FN(vkDeviceWaitIdle);
INIT_DEV_FN(vkCmdClearColorImage);
INIT_DEV_FN(vkCreateSampler);
INIT_DEV_FN(vkDestroySampler);
INIT_DEV_FN(vkGetBufferDeviceAddress);
return true;
}
// TODO(MA): implement other platforms
#ifdef __linux__
static b32 vSurfaceInit()
{
pPlatformWindow *window = pWindowGet();
VkXcbSurfaceCreateInfoKHR surface_info = {
.sType = STYPE(XCB_SURFACE_CREATE_INFO_KHR),
.connection = window->connection,
.window = window->window
};
VkResult result = vkCreateXcbSurfaceKHR(v_Renderer.handles.inst, &surface_info, NULL, &v_Renderer.handles.surface);
if (result != VK_SUCCESS) {
Printf("Unable to create surface: %d", result);
}
return result == VK_SUCCESS;
}
#elif _WIN32
static b32 vSurfaceInit()
{
b32 success = true;
pPlatformWindow *window = pWindowGet();
VkWin32SurfaceCreateInfoKHR surface_info = {
.sType = STYPE(WIN32_SURFACE_CREATE_INFO_KHR),
.hinstance = window->instance,
.hwnd = window->handle,
};
VkResult result = vkCreateWin32SurfaceKHR(v_Renderer.handles.inst, &surface_info, NULL, &v_Renderer.handles.surface);
if (result != VK_SUCCESS)
{
Printfln("Unable to create surface: %s", vVkResultStr(result));
success = false;
}
return success;
}
#endif
static b32 vLibraryLoad()
{
pLibrary *lib = &v_Renderer.handles.lib;
b32 lib_found; pFunction fn;
for (i32 i = 0; i < Len(vulkan_libs); i++)
{
lib_found = pLibraryLoad(vulkan_libs[i], lib);
if (lib_found)
{
lib_found = pFunctionLoad("vkGetInstanceProcAddr", lib, &fn);
vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)fn.fn;
break;
}
}
return lib_found;
}
static b32 vFrameStructuresInit()
{
b32 success = true;
u32 img_count = v_Renderer.images.sc.length;
pool_create_info.queueFamilyIndex = v_Renderer.state.vk.gfx_queue_idx;
for (u32 i = 0; i < FRAME_OVERLAP; i++)
{
VkResult result;
VkDevice device = v_Renderer.handles.device;
vFrameHandles *handles = &v_Renderer.frame_handles[i];
result = vkCreateCommandPool(device, &pool_create_info, NULL, &handles->pool);
if (result != VK_SUCCESS)
success = false;
cmd_buf_info.commandPool = handles->pool;
result = vkAllocateCommandBuffers(device, &cmd_buf_info, &handles->buffer);
if (result != VK_SUCCESS)
success = false;
result = vkCreateFence(device, &fence_create_info, NULL, &handles->r_fence);
if (result != VK_SUCCESS)
success = false;
result = vkCreateSemaphore(device, &semaphore_create_info, NULL, &handles->r_sem);
if (result != VK_SUCCESS)
success = false;
result = vkCreateSemaphore(device, &semaphore_create_info, NULL, &handles->sc_sem);
if (result != VK_SUCCESS)
success = false;
//renderer.vk.frame.buffer_destroy_queues[i] = ArenaAlloc(v_Renderer.mem.perm_arena, sizeof(rRenderBuffer) * 64);
}
return success;
}
static b32 vImmediateStructuresInit()
{
b32 success = true;
VkResult result;
VkDevice device = v_Renderer.handles.device;
vImmHandles *imm = &v_Renderer.imm;
pool_create_info.queueFamilyIndex = v_Renderer.state.vk.tfer_queue_idx;
result = vkCreateCommandPool(device, &pool_create_info, NULL, &imm->pool);
if (result != VK_SUCCESS)
success = false;
cmd_buf_info.commandPool = imm->pool;
result = vkAllocateCommandBuffers(device, &cmd_buf_info, &imm->buffer);
if (result != VK_SUCCESS)
success = false;
result = vkCreateFence(device, &fence_create_info, NULL, &imm->fence);
if (result != VK_SUCCESS)
success = false;
return success;
}
static void vUploadQueuesInit()
{
v_Renderer.upload.transfers = MakeArray(v_Renderer.mem.perm_arena, vTransfer *, 256);
}
static b32 vSwapchainInit()
{
b32 success = true;
VkPhysicalDevice phys_device = v_Renderer.handles.phys_device;
VkDevice device = v_Renderer.handles.device;
VkSurfaceKHR surface = v_Renderer.handles.surface;
VkPresentModeKHR present_mode = v_Renderer.state.swapchain.present_mode;
VkFormat format = v_Renderer.state.swapchain.format;
VkColorSpaceKHR color_space = v_Renderer.state.swapchain.color_space;
Arena *arena = vFrameArena();
VkSurfaceCapabilitiesKHR capabilities;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(phys_device, surface, &capabilities);
// Maybe reconsider handling window sizing within here and only handle it from events themselves
// causes issues when the window size is out of sync with the current swapchain
VkExtent2D extent;
u32 width = v_Renderer.state.swapchain.extent.width;
u32 height = v_Renderer.state.swapchain.extent.height;
extent.width = Clampu32((u32)width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width);
extent.height = Clampu32((u32)height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height);
if (present_mode == INT_MAX || format == INT_MAX || color_space == INT_MAX)
{
u32 format_count;
vkGetPhysicalDeviceSurfaceFormatsKHR(phys_device, surface, &format_count, NULL);
VkSurfaceFormatKHR *formats = ArenaAlloc(arena, sizeof(VkSurfaceFormatKHR) * format_count);
vkGetPhysicalDeviceSurfaceFormatsKHR(phys_device, surface, &format_count, formats);
format = formats[0].format;
color_space = formats[0].colorSpace;
u32 present_count;
vkGetPhysicalDeviceSurfacePresentModesKHR(phys_device, surface, &present_count, NULL);
VkPresentModeKHR *present_modes = ArenaAlloc(arena, sizeof(VkSurfaceFormatKHR) * present_count);
vkGetPhysicalDeviceSurfacePresentModesKHR(phys_device, surface, &present_count, present_modes);
for (u32 i = 0; i < present_count; i++)
{
if (present_modes[i] == VK_PRESENT_MODE_MAILBOX_KHR)
{
present_mode = VK_PRESENT_MODE_MAILBOX_KHR;
break;
}
}
if (present_mode != VK_PRESENT_MODE_MAILBOX_KHR)
present_mode = VK_PRESENT_MODE_FIFO_KHR;
}
swapchain_create_info.minImageCount = capabilities.minImageCount + 1;
swapchain_create_info.surface = surface;
swapchain_create_info.imageFormat = format;
swapchain_create_info.imageColorSpace = color_space;
swapchain_create_info.imageExtent = extent;
swapchain_create_info.preTransform = capabilities.currentTransform;
swapchain_create_info.presentMode = present_mode;
VkResult result;
result = vkCreateSwapchainKHR(device, &swapchain_create_info, NULL, &v_Renderer.handles.swapchain);
if (result != VK_SUCCESS)
success = false;
u32 image_count;
vkGetSwapchainImagesKHR(device, v_Renderer.handles.swapchain, &image_count, NULL);
VkImage *sc_images = ArenaAlloc(v_Renderer.mem.perm_arena, sizeof(VkImage) * image_count);
VkImageView *sc_views = ArenaAlloc(v_Renderer.mem.perm_arena, sizeof(VkImageView) * image_count);
vkGetSwapchainImagesKHR(device, v_Renderer.handles.swapchain, &image_count, sc_images);
InitArrayType(v_Renderer.images.sc, v_Renderer.mem.perm_arena, vImageView, image_count);
for (u32 i = 0; i < image_count; i++)
{
v_Renderer.images.sc.data[i].image.image = sc_images[i];
sc_image_view_create_info.image = sc_images[i];
sc_image_view_create_info.format = format;
result = vkCreateImageView(device, &sc_image_view_create_info, NULL, &v_Renderer.images.sc.data[i].view);
if (result != VK_SUCCESS)
success = false;
}
v_Renderer.images.sc.length = image_count;
v_Renderer.state.swapchain.format = format;
v_Renderer.state.swapchain.color_space = color_space;
v_Renderer.state.swapchain.present_mode = present_mode;
v_Renderer.state.swapchain.extent.width = extent.width;
v_Renderer.state.swapchain.extent.height = extent.height;
v_Renderer.state.swapchain.extent.depth = 1;
return success;
}
static b32 vDrawImagesInit()
{
b32 success = true;
VkResult result;
VkFormat image_format = vImageFormatGet();
VkExtent3D extent = v_Renderer.state.swapchain.extent;
VkDevice device = v_Renderer.handles.device;
VmaAllocationCreateInfo alloc_create_info = {
.usage = VMA_MEMORY_USAGE_GPU_ONLY,
.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
};
// Draw vImage
draw_image_create_info.format = image_format;
draw_image_create_info.extent = extent;
result = vmaCreateImage(v_Renderer.handles.vma_alloc, &draw_image_create_info,
&alloc_create_info, &v_Renderer.images.draw.image.image, &v_Renderer.images.draw.image.alloc, NULL);
if (result != VK_SUCCESS)
success = false;
// Draw vImage View
draw_image_view_create_info.image = v_Renderer.images.draw.image.image;
draw_image_view_create_info.format = image_format;
result = vkCreateImageView(device, &draw_image_view_create_info, NULL, &v_Renderer.images.draw.view);
if (result != VK_SUCCESS)
success = false;
// Depth vImage
depth_image_create_info.extent = extent;
result = vmaCreateImage(v_Renderer.handles.vma_alloc, &depth_image_create_info,
&alloc_create_info, &v_Renderer.images.depth.image.image, &v_Renderer.images.depth.image.alloc, NULL);
if (result != VK_SUCCESS)
success = false;
// Depth vImage View
depth_image_view_create_info.image = v_Renderer.images.depth.image.image;
result = vkCreateImageView(device, &depth_image_view_create_info, NULL, &v_Renderer.images.depth.view);
if (result != VK_SUCCESS)
success = false;
// Setting values
v_Renderer.state.swapchain.extent = extent;
v_Renderer.images.depth.image.format = depth_image_create_info.format;
v_Renderer.images.depth.image.layout = VK_IMAGE_LAYOUT_UNDEFINED;
v_Renderer.images.draw.image.format = draw_image_create_info.format;
v_Renderer.images.draw.image.layout = VK_IMAGE_LAYOUT_UNDEFINED;
return success;
}
static VkFormat vImageFormatGet()
{
VkPhysicalDevice phys_device = v_Renderer.handles.phys_device;
VkImageType image_type = VK_IMAGE_TYPE_2D;
VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL;
VkImageUsageFlags usage_flags = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
VkFormat format = 0;
for (i32 i = 0; i < Len(VK_IMAGE_FORMATS); i++)
{
VkImageFormatProperties properties;
VkResult result;
result = vkGetPhysicalDeviceImageFormatProperties(phys_device, VK_IMAGE_FORMATS[i], image_type,
tiling, usage_flags, 0, &properties);
if (result == VK_ERROR_FORMAT_NOT_SUPPORTED)
continue;
if (result == VK_SUCCESS)
{
format = VK_IMAGE_FORMATS[i];
break;
}
}
Assert(format != 0, "[Error] unable to find appropriate image format");
return format;
}
static b32 vDescriptorsInit()
{
b32 success = true;
VkDevice device = v_Renderer.handles.device;
VkResult result;
vDescBindings *bindings = v_Renderer.desc_bindings;
result = vkCreateDescriptorPool(device, &desc_pool_info, NULL, &v_Renderer.handles.desc_pool);
if (result != VK_SUCCESS)
success = false;
result = vkCreateDescriptorSetLayout(device, &shared_layout_create_info, NULL, &v_Renderer.handles.desc_layouts[vDT_SHARED]);
if (result != VK_SUCCESS)
success = false;
for (u32 i = vDT_SAMPLED_IMAGE; i < vDT_MAX; i++)
{
bindless_layout_binding.descriptorType = desc_type_map[i];
result = vkCreateDescriptorSetLayout(device, &bindless_layout_create_info, NULL, &v_Renderer.handles.desc_layouts[i]);
if (result != VK_SUCCESS)
success = false;
}
set_allocate_info.descriptorPool = v_Renderer.handles.desc_pool;
set_allocate_info.pSetLayouts = v_Renderer.handles.desc_layouts;
result = vkAllocateDescriptorSets(device, &set_allocate_info, v_Renderer.handles.desc_sets);
if (result != VK_SUCCESS)
success = false;
pipeline_layout_create_info.setLayoutCount = vDT_MAX;
pipeline_layout_create_info.pSetLayouts = v_Renderer.handles.desc_layouts;
result = vkCreatePipelineLayout(device, &pipeline_layout_create_info, NULL, &v_Renderer.handles.pipeline_layout);
if (result != VK_SUCCESS)
success = false;
if (success)
{
for (u32 i = 0; i < vDT_MAX; i++)
{
// FREE MIGHT BE NULL
bindings[i].free = ArenaAlloc(v_Renderer.mem.perm_arena, sizeof(u32) * DESC_MAX_BINDINGS);
HashTableInit(&bindings[i].lookup_table, 6);
u32 free_count = 0;
for (i32 j = DESC_MAX_BINDINGS-1; j >= 0; j--)
{
bindings[i].free[j] = free_count++;
}
bindings[i].free_count = free_count;
}
}
if (success)
{
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(v_Renderer.handles.phys_device, &properties);
VkSamplerCreateInfo sampler_create_info = {
.sType = STYPE(SAMPLER_CREATE_INFO),
.magFilter = VK_FILTER_NEAREST,
.minFilter = VK_FILTER_NEAREST,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.anisotropyEnable = VK_TRUE,
.maxAnisotropy = properties.limits.maxSamplerAnisotropy,
.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK,
.compareOp = VK_COMPARE_OP_ALWAYS,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR,
};
result = vkCreateSampler(v_Renderer.handles.device, &sampler_create_info, NULL, &v_Renderer.handles.nearest_sampler);
if (result != VK_SUCCESS)
{
Printfln("vDescriptorsInit failure: vkCreateSampler failed: %s", vVkResultStr(result));
success = false;
}
}
if (success)
{
VkDescriptorImageInfo sampler_info = {
.sampler = v_Renderer.handles.nearest_sampler,
};
VkWriteDescriptorSet desc_write = {
.sType = STYPE(WRITE_DESCRIPTOR_SET),
.dstSet = v_Renderer.handles.desc_sets[vDT_SHARED],
.dstBinding = 3,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER,
.pImageInfo = &sampler_info,
};
vkUpdateDescriptorSets(v_Renderer.handles.device, 1, &desc_write, 0, NULL);
}
return success;
}
static b32 vPipelinesInit()
{
b32 success = true;
VkResult result;
VkDevice device = v_Renderer.handles.device;
/*
* SHARED
*/
VkPipelineRenderingCreateInfo pipeline_render_info = {
.sType = STYPE(PIPELINE_RENDERING_CREATE_INFO),
.colorAttachmentCount = 1,
.pColorAttachmentFormats = &v_Renderer.images.draw.image.format,
.depthAttachmentFormat = v_Renderer.images.depth.image.format,
};
/*
* QUAD PIPELINE START
*/
Asset quad_vert_shader = apLoadShader(QUAD_VERT_SPIRV_SHADER);
Asset quad_frag_shader = apLoadShader(QUAD_FRAG_SPIRV_SHADER);
VkShaderModule cube_vert, cube_frag;
success &= vShaderModuleInit(quad_vert_shader.bytes, quad_vert_shader.len, &cube_vert);
success &= vShaderModuleInit(quad_frag_shader.bytes, quad_frag_shader.len, &cube_frag);
VkPipelineShaderStageCreateInfo cube_shader_stages[] = {
{
.sType = STYPE(PIPELINE_SHADER_STAGE_CREATE_INFO),
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = cube_vert,
.pName = "main",
},
{
.sType = STYPE(PIPELINE_SHADER_STAGE_CREATE_INFO),
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = cube_frag,
.pName = "main",
},
};
cube_create_info.pStages = cube_shader_stages;
cube_create_info.stageCount = Len(cube_shader_stages);
cube_create_info.layout = v_Renderer.handles.pipeline_layout;
cube_create_info.pNext = &pipeline_render_info;
result = vkCreateGraphicsPipelines(device, 0, 1, &cube_create_info, NULL, &v_Renderer.handles.pipelines[rPIPELINE_CUBE]);
if (result != VK_SUCCESS)
{
Printf("vkCreateGraphicsPipelines failure: %s", vVkResultStr(result));
success = false;
}
vkDestroyShaderModule(device, cube_vert, NULL);
vkDestroyShaderModule(device, cube_frag, NULL);
apUnloadShader(QUAD_VERT_SPIRV_SHADER);
apUnloadShader(QUAD_FRAG_SPIRV_SHADER);
/*
* GUI PIPELINE START
*/
Asset gui_vert_shader = apLoadShader(GUI_VERT_SPIRV_SHADER);
Asset gui_frag_shader = apLoadShader(GUI_FRAG_SPIRV_SHADER);
VkShaderModule gui_vert, gui_frag;
success &= vShaderModuleInit(gui_vert_shader.bytes, gui_vert_shader.len, &gui_vert);
success &= vShaderModuleInit(gui_frag_shader.bytes, gui_frag_shader.len, &gui_frag);
VkPipelineShaderStageCreateInfo gui_shader_stages[] = {
{
.sType = STYPE(PIPELINE_SHADER_STAGE_CREATE_INFO),
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = gui_vert,
.pName = "main",
},
{
.sType = STYPE(PIPELINE_SHADER_STAGE_CREATE_INFO),
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = gui_frag,
.pName = "main",
},
};
gui_create_info.pStages = gui_shader_stages;
gui_create_info.stageCount = Len(gui_shader_stages);
gui_create_info.layout = v_Renderer.handles.pipeline_layout;
gui_create_info.pNext = &pipeline_render_info;
result = vkCreateGraphicsPipelines(device, 0, 1, &gui_create_info, NULL, &v_Renderer.handles.pipelines[rPIPELINE_GUI]);
if (result != VK_SUCCESS)
{
Printfln("vkCreateGraphicsPipelines failure: %s", vVkResultStr(result));
success = false;
}
vkDestroyShaderModule(device, gui_vert, NULL);
vkDestroyShaderModule(device, gui_frag, NULL);
apUnloadShader(GUI_VERT_SPIRV_SHADER);
apUnloadShader(GUI_FRAG_SPIRV_SHADER);
/*
* PBR PIPELINE START
*/
Asset pbr_vert_shader = apLoadShader(PBR_VERT_SPIRV_SHADER);
Asset pbr_frag_shader = apLoadShader(PBR_FRAG_SPIRV_SHADER);
VkShaderModule pbr_vert, pbr_frag;
success &= vShaderModuleInit(pbr_vert_shader.bytes, pbr_vert_shader.len, &pbr_vert);
success &= vShaderModuleInit(pbr_frag_shader.bytes, pbr_frag_shader.len, &pbr_frag);
VkPipelineShaderStageCreateInfo pbr_shader_stages[] = {
{
.sType = STYPE(PIPELINE_SHADER_STAGE_CREATE_INFO),
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = pbr_vert,
.pName = "main",
},
{
.sType = STYPE(PIPELINE_SHADER_STAGE_CREATE_INFO),
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = pbr_frag,
.pName = "main",
},
};
pbr_create_info.pStages = pbr_shader_stages;
pbr_create_info.stageCount = Len(pbr_shader_stages);
pbr_create_info.layout = v_Renderer.handles.pipeline_layout;
pbr_create_info.pNext = &pipeline_render_info;
result = vkCreateGraphicsPipelines(device, 0, 1, &pbr_create_info, NULL, &v_Renderer.handles.pipelines[rPIPELINE_PBR]);
if (result != VK_SUCCESS)
{
Printfln("vkCreateGraphicsPipelineFailure: %s", vVkResultStr(result));
success = false;
}
vkDestroyShaderModule(device, pbr_vert, NULL);
vkDestroyShaderModule(device, pbr_frag, NULL);
apUnloadShader(PBR_VERT_SPIRV_SHADER);
apUnloadShader(PBR_FRAG_SPIRV_SHADER);
return success;
}
static b32 vShaderModuleInit(u8 *bytes, u32 len, VkShaderModule *module)
{
VkResult result;
b32 success = true;
VkShaderModuleCreateInfo module_info = {
.sType = STYPE(SHADER_MODULE_CREATE_INFO),
.codeSize = len,
.pCode = (u32 *)bytes,
};
result = vkCreateShaderModule(v_Renderer.handles.device, &module_info, NULL, module);
if (result != VK_SUCCESS)
{
Printf("vkCreateShaderModule failure: %s", vVkResultStr(result));
success = false;
}
return success;
}
static b32 vBuffersInit()
{
vRBuffers *buf = &v_Renderer.buffers;
Arena *arena = v_Renderer.mem.perm_arena;
HashTableInit(&buf->buffers, 8);
HashTableInit(&buf->images, 8);
buf->tex_destroy_queue.data = MakeArray(arena, b8 *, FRAME_OVERLAP);
buf->tex_destroy_queue.length = FRAME_OVERLAP;
for (u32 i = 0; i < FRAME_OVERLAP; i++)
{
InitArrayType(buf->frame_buffers[i], arena, vBuffer *, 128);
InitArrayType(buf->frame_images[i], arena, vImageView *, 128);
buf->tex_destroy_queue.data[i] = MakeArray(arena, b8, TEXTURE_ASSET_MAX);
MemZero(buf->tex_destroy_queue.data[i], sizeof(b8) * TEXTURE_ASSET_MAX);
}
b32 success = true;
VkResult result;
if (success)
{
result = vBufferCreate(&buf->gui_vert.alloc, rRBT_VERTEX | rRBT_HOST, VERTEX_BUFFER_CAP);
if (result != VK_SUCCESS)
success = false;
}
if (success)
{
result = vBufferCreate(&buf->gui_idx.alloc, rRBT_INDEX | rRBT_HOST, INDEX_BUFFER_CAP); // TODO: figure out ratio of memory alloc from vertex -> index
if (result != VK_SUCCESS)
success = false;
}
if (success)
{
result = vBufferCreate(&buf->transfer.alloc, rRBT_STAGING, TRANSFER_BUFFER_CAP);
if (result != VK_SUCCESS)
success = false;
}
buf->gui_vert.ptr = vMapBuffer(buf->gui_vert.alloc.alloc);
buf->gui_vert.cap = MB(32);
buf->gui_idx.ptr = vMapBuffer(buf->gui_idx.alloc.alloc);
buf->gui_idx.cap = MB(8);
buf->transfer.ptr = vMapBuffer(buf->transfer.alloc.alloc);
buf->transfer.cap = MB(64);
return success;
}
static void vLoaderStartThreads()
{
v_Renderer.async.thread = pThreadInit(vLoaderStart, NULL);
}
// ::Vulkan::Init::Functions::End::
// ::Vulkan::Async::Functions::Start::
static void vTransferUpload(vTransfer **transfers, u32 count)
{
VkCommandPool pool = v_Renderer.imm.pool;
VkCommandBuffer buffer = v_Renderer.imm.buffer;
VkFence fence = v_Renderer.imm.fence;
VkDevice device = v_Renderer.handles.device;
VkQueue queue = v_Renderer.handles.tfer_queue;
vMappedBuffer *transfer = &v_Renderer.buffers.transfer;
rawptr data_ptr = NULL;
u64 data_len = 0;
rawptr ptr = transfer->ptr;
u64 ptr_pos = 0;
u64 transfer_size = 0;
VkDeviceSize offset = 0;
b32 imm_started = false;
b32 mesh_uniform_uploaded = false;
u32 i = 0;
for (;;)
{
if (i == count)
break;
if (data_ptr == NULL)
{
if (transfers[i]->type == vTT_IMAGE)
{
data_len = transfers[i]->w * transfers[i]->h * transfers[i]->ch;
}
else
{
data_len = transfers[i]->size;
}
data_ptr = transfers[i]->data;
}
if (ptr_pos == transfer->cap)
{
vImmSubmitFinish(device, fence, buffer, queue);
vkWaitForFences(device, 1, &fence, VK_TRUE, 999999999);
ptr = transfer->ptr;
offset = 0;
imm_started = false;
}
if (!imm_started)
{
Assert(vImmSubmitBegin(device, fence, buffer), "vTransferUpload failure: vImmSubmitBegin failed"); // TODO: handle this
imm_started = true;
}
if (!mesh_uniform_uploaded && transfers[i]->type == vTT_MESH)
{
VkBufferDeviceAddressInfo addr_info = {
.sType = STYPE(BUFFER_DEVICE_ADDRESS_INFO),
.buffer = transfers[i]->mesh->mesh.buffer,
};
vMesh mesh = {
.vertices = vkGetBufferDeviceAddress(device, &addr_info),
};
VkBufferCopy copy = {
.srcOffset = offset,
.dstOffset = cast(VkDeviceSize, 0),
.size = sizeof(vMesh),
};
MemCpy(ptr, &mesh, sizeof(vMesh));
ptr = PtrAdd(ptr, sizeof(vMesh));
ptr_pos += sizeof(vMesh);
offset += sizeof(vMesh);
vkCmdCopyBuffer(buffer, transfer->alloc.buffer, transfers[i]->mesh->uniform.buffer, 1, &copy);
mesh_uniform_uploaded = true;
}
if (transfers[i]->type != vTT_NONE)
{
u64 remaining = Diff(TRANSFER_BUFFER_CAP, ptr_pos);
transfer_size = data_len;
if (transfer_size > remaining)
transfer_size = remaining;
MemCpy(ptr, data_ptr, transfer_size);
ptr = PtrAdd(ptr, transfer_size);
PtrAddAdjustLen(data_ptr, data_len, transfer_size);
ptr_pos += transfer_size;
}
// TODO:
/* == Transfers ==
* - offsets for target buffer
* - batch copy commands where possible
*/
if (transfers[i]->type == vTT_IMAGE)
{
VkBufferImageCopy copy = {
.bufferRowLength = transfers[i]->w,
.bufferImageHeight = transfers[i]->h,
.imageSubresource = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.layerCount = 1,
},
.imageExtent = {
.width = transfers[i]->w,
.height = transfers[i]->h,
.depth = 1,
},
.bufferOffset = offset,
};
vImageTransitionLayout(buffer,
transfers[i]->image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdCopyBufferToImage(buffer,
transfer->alloc.buffer,
transfers[i]->image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copy);
vImageTransitionLayout(buffer,
transfers[i]->image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
offset += (VkDeviceSize)transfer_size;
}
else if (transfers[i]->type == vTT_BUFFER || transfers[i]->type == vTT_MESH)
{
VkBuffer target_buf;
if (transfers[i]->type == vTT_BUFFER)
target_buf = transfers[i]->buffer;
else if (transfers[i]->type == vTT_MESH)
target_buf = transfers[i]->mesh->mesh.buffer;
VkBufferCopy copy = {
.srcOffset = offset,
.dstOffset = 0,
.size = transfer_size,
};
Printfln("transfer size %llu", transfer_size);
vkCmdCopyBuffer(buffer, transfer->alloc.buffer, target_buf, 1, &copy);
offset += cast(VkDeviceSize, transfer_size);
}
if (data_len == 0)
{
data_ptr = NULL;
data_len = 0;
transfer_size = 0;
i += 1;
mesh_uniform_uploaded = false;
}
}
if (imm_started)
vImmSubmitFinish(device, fence, buffer, queue);
}
#ifdef __linux__
void *vLoaderStart(void *i)
{
vLoader();
pthread_exit(NULL);
}
#elif _WIN32
DWORD WINAPI vLoaderStart(LPVOID thread_data)
{
vLoader();
return 0;
}
#endif
static void vLoaderWake()
{
pThreadWake(&v_Renderer.async.thread);
}
static void vLoader()
{
pThread *self = &v_Renderer.async.thread;
for (;;)
{
TicketMutLock(&v_Renderer.upload.mut);
u32 job_count = JobQueueGetCount(&v_Renderer.upload.job_queue);
if (job_count > 0)
{
vTransfer **transfers = MakeArray(vFrameArena(), vTransfer *, job_count);
u32 unqueued_count = 0;
for (u32 i = 0; i < job_count; i++)
{
unqueued_count += 1;
transfers[i] = v_Renderer.upload.transfers[i];
}
JobQueueMarkUnqueued(&v_Renderer.upload.job_queue, unqueued_count);
TicketMutUnlock(&v_Renderer.upload.mut);
vTransferUpload(transfers, job_count);
for (u32 i = 0; i < job_count; i++)
{
if (transfers[i]->type == vTT_IMAGE)
apUnloadTexture(transfers[i]->asset_id);
}
JobQueueMarkCompleted(&v_Renderer.upload.job_queue, job_count);
}
else if (job_count == 0)
{
pAtomicStoreB32(&v_Renderer.async.sleeping, 1);
TicketMutUnlock(&v_Renderer.upload.mut);
pThreadSuspend(self);
pAtomicStoreB32(&v_Renderer.async.sleeping, 0);
}
else
{
TicketMutUnlock(&v_Renderer.upload.mut);
pThreadKill();
}
}
pThreadKill();
}
// ::Vulkan::Async::Functions::End::
// ::Vulkan::CleanUp::Functions::Start::
static void vSwapchainDestroy()
{
vImageViewArray images = v_Renderer.images.sc;
VkDevice device = v_Renderer.handles.device;
VkSwapchainKHR swapchain = v_Renderer.handles.swapchain;
for (u32 i = 0; i < images.length; i++)
{
vkDestroyImageView(device, images.data[i].view, NULL);
}
vkDestroySwapchainKHR(device, swapchain, NULL);
}
static void vDrawImagesDestroy()
{
vRImages *images = &v_Renderer.images;
VkDevice device = v_Renderer.handles.device;
VmaAllocator vma_alloc = v_Renderer.handles.vma_alloc;
vkDestroyImageView(device, images->draw.view, NULL);
vmaDestroyImage(vma_alloc, images->draw.image.image, images->draw.image.alloc);
vkDestroyImageView(device, images->depth.view, NULL);
vmaDestroyImage(vma_alloc, images->depth.image.image, images->depth.image.alloc);
}
// ::Vulkan::CleanUp::Functions::End::
// ::Vulkan::Logging::Functions::Start::
void vInfo(const char *str)
{
Printfln("[INFO] %s", str);
}
void vWarn(const char *str)
{
Printfln("[WARN] %s", str);
}
void vError(const char *str)
{
Printfln("[ERROR] %s", str);
}
// ::Vulkan::Logging::Functions::End::
// ::Vulkan::Debug::Functions::Start::
const char *vVkResultStr(VkResult result)
{
switch (result)
{
case VK_SUCCESS:
return "VK_SUCCESS";
case VK_NOT_READY:
return "VK_NOT_READY";
case VK_TIMEOUT:
return "VK_TIMEOUT";
case VK_EVENT_SET:
return "VK_EVENT_SET";
case VK_EVENT_RESET:
return "VK_EVENT_RESET";
case VK_INCOMPLETE:
return "VK_INCOMPLETE";
case VK_ERROR_OUT_OF_HOST_MEMORY:
return "VK_ERROR_OUT_OF_HOST_MEMORY";
case VK_ERROR_OUT_OF_DEVICE_MEMORY:
return "VK_ERROR_OUT_OF_DEVICE_MEMORY";
case VK_ERROR_INITIALIZATION_FAILED:
return "VK_ERROR_INITIALIZATION_FAILED";
case VK_ERROR_DEVICE_LOST:
return "VK_ERROR_DEVICE_LOST";
case VK_ERROR_MEMORY_MAP_FAILED:
return "VK_ERROR_MEMORY_MAP_FAILED";
case VK_ERROR_LAYER_NOT_PRESENT:
return "VK_ERROR_LAYER_NOT_PRESENT";
case VK_ERROR_EXTENSION_NOT_PRESENT:
return "VK_ERROR_EXTENSION_NOT_PRESENT";
case VK_ERROR_FEATURE_NOT_PRESENT:
return "VK_ERROR_FEATURE_NOT_PRESENT";
case VK_ERROR_INCOMPATIBLE_DRIVER:
return "VK_ERROR_INCOMPATIBLE_DRIVER";
case VK_ERROR_TOO_MANY_OBJECTS:
return "VK_ERROR_TOO_MANY_OBJECTS";
case VK_ERROR_FORMAT_NOT_SUPPORTED:
return "VK_ERROR_FORMAT_NOT_SUPPORTED";
case VK_ERROR_FRAGMENTED_POOL:
return "VK_ERROR_FRAGMENTED_POOL";
case VK_ERROR_UNKNOWN:
return "VK_ERROR_UNKNOWN";
case VK_ERROR_OUT_OF_POOL_MEMORY:
return "VK_ERROR_OUT_OF_POOL_MEMORY";
case VK_ERROR_INVALID_EXTERNAL_HANDLE:
return "VK_ERROR_INVALID_EXTERNAL_HANDLE";
case VK_ERROR_FRAGMENTATION:
return "VK_ERROR_FRAGMENTATION";
case VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS:
return "VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS";
case VK_PIPELINE_COMPILE_REQUIRED:
return "VK_PIPELINE_COMPILE_REQUIRED";
case VK_ERROR_SURFACE_LOST_KHR:
return "VK_ERROR_SURFACE_LOST_KHR";
case VK_ERROR_NATIVE_WINDOW_IN_USE_KHR:
return "VK_ERROR_NATIVE_WINDOW_IN_USE_KHR";
case VK_SUBOPTIMAL_KHR:
return "VK_SUBOPTIMAL_KHR";
case VK_ERROR_OUT_OF_DATE_KHR:
return "VK_ERROR_OUT_OF_DATE_KHR";
case VK_ERROR_INCOMPATIBLE_DISPLAY_KHR:
return "VK_ERROR_INCOMPATIBLE_DISPLAY_KHR";
case VK_ERROR_VALIDATION_FAILED_EXT:
return "VK_ERROR_VALIDATION_FAILED_EXT";
case VK_ERROR_INVALID_SHADER_NV:
return "VK_ERROR_INVALID_SHADER_NV";
#ifdef VK_ENABLE_BETA_EXTENSIONS
case VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR:
return "VK_ERROR_IMAGE_USAGE_NOT_SUPPORTED_KHR";
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
case VK_ERROR_VIDEO_PICTURE_LAYOUT_NOT_SUPPORTED_KHR:
return "VK_ERROR_VIDEO_PICTURE_LAYOUT_NOT_SUPPORTED_KHR";
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
case VK_ERROR_VIDEO_PROFILE_OPERATION_NOT_SUPPORTED_KHR:
return "VK_ERROR_VIDEO_PROFILE_OPERATION_NOT_SUPPORTED_KHR";
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
case VK_ERROR_VIDEO_PROFILE_FORMAT_NOT_SUPPORTED_KHR:
return "VK_ERROR_VIDEO_PROFILE_FORMAT_NOT_SUPPORTED_KHR";
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
case VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR:
return "VK_ERROR_VIDEO_PROFILE_CODEC_NOT_SUPPORTED_KHR";
#endif
#ifdef VK_ENABLE_BETA_EXTENSIONS
case VK_ERROR_VIDEO_STD_VERSION_NOT_SUPPORTED_KHR:
return "VK_ERROR_VIDEO_STD_VERSION_NOT_SUPPORTED_KHR";
#endif
case VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT:
return "VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT";
case VK_ERROR_NOT_PERMITTED_KHR:
return "VK_ERROR_NOT_PERMITTED_KHR";
case VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT:
return "VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT";
case VK_THREAD_IDLE_KHR:
return "VK_THREAD_IDLE_KHR";
case VK_THREAD_DONE_KHR:
return "VK_THREAD_DONE_KHR";
case VK_OPERATION_DEFERRED_KHR:
return "VK_OPERATION_DEFERRED_KHR";
case VK_OPERATION_NOT_DEFERRED_KHR:
return "VK_OPERATION_NOT_DEFERRED_KHR";
case VK_ERROR_COMPRESSION_EXHAUSTED_EXT:
return "VK_ERROR_COMPRESSION_EXHAUSTED_EXT";
case VK_RESULT_MAX_ENUM:
return "VK_RESULT_MAX_ENUM";
default:
return "??????";
}
}
static VKAPI_ATTR VkBool32 vDebugCallback(
VkDebugUtilsMessageSeverityFlagBitsEXT message_severity,
VkDebugUtilsMessageTypeFlagsEXT message_type,
const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData,
void *pUserData
) {
char *ms, *mt;
switch (message_severity) {
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT:
ms = (char *)"VERBOSE";
break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT:
ms = (char *)"INFO";
break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT:
ms = (char *)"WARNING";
break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT:
ms = (char *)"ERROR";
break;
default:
ms = (char *)"UNKNOWN";
break;
}
switch (message_type) {
case VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT:
mt = (char *)"General";
break;
case VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT:
mt = (char *)"Validation";
break;
case VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT:
mt = (char *)"Validation | General";
break;
case VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT:
mt = (char *)"Performance";
break;
case VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT:
mt = (char *)"General | Performance";
break;
case VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT:
mt = (char *)"Validation | Performance";
break;
case VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT:
mt = (char *)"General | Validation | Performance";
break;
default:
mt = (char *)"Unknown";
break;
}
Printf("[%s: %s]\n%s\n", ms, mt, pCallbackData->pMessage);
return VK_FALSE;
}
static b32 vValidationSupported()
{
b32 success = false;
Arena *arena = vFrameArena();
u32 count;
vkEnumerateInstanceLayerProperties(&count, NULL);
Assert(count, "vValidationSupported(): vkEnumerateInstanceLayerProperties returned a count of 0");
VkLayerProperties *layers = ArenaAlloc(arena, sizeof(VkLayerProperties) * count);
vkEnumerateInstanceLayerProperties(&count, layers);
for (u32 i = 0; i < count; i++) {
if (StrEq(layers[i].layerName, _VK_VALIDATION)) {
success = true;
break;
}
}
return success;
}
// ::Vulkan::Debug::Functions::End::