/** * SHA intrinsics. * https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#othertechs=SHA * * Copyright: Guillaume Piolat 2021. * Johan Engelen 2021. * License: $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0) */ module inteli.shaintrin; // SHA instructions // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#othertechs=SHA // Note: this header will work whether you have SHA enabled or not. // With LDC, use "dflags-ldc": ["-mattr=+sha"] or equivalent to actively // generate SHA instructions. // With GDC, use "dflags-gdc": ["-msha"] or equivalent to generate SHA instructions. public import inteli.types; import inteli.internals; nothrow @nogc: /+ /// Perform an intermediate calculation for the next four SHA1 message values (unsigned 32-bit integers) using previous message values from a and b, and store the result in dst. __m128i _mm_sha1nexte_epu32(__m128i a, __m128i b) @trusted { static if (SHA_builtins) { return __builtin_ia32_sha1nexte(cast(int4) a, cast(int4) b); } else { assert(0); } } unittest { } +/ /+ /// Perform the final calculation for the next four SHA1 message values (unsigned 32-bit integers) using the intermediate result in a and the previous message values in b, and store the result in dst. __m128i _mm_sha1msg1_epu32(__m128i a, __m128i b) @trusted { static if (SHA_builtins) { return __builtin_ia32_sha1msg1(cast(int4) a, cast(int4) b); } else { assert(0); } } unittest { } +/ /+ /// Calculate SHA1 state variable E after four rounds of operation from the current SHA1 state variable a, add that value to the scheduled values (unsigned 32-bit integers) in b, and store the result in dst. __m128i _mm_sha1msg2_epu32(__m128i a, __m128i b) @trusted { static if (SHA_builtins) { return __builtin_ia32_sha1msg2(cast(int4) a, cast(int4) b); } else { assert(0); } } unittest { } +/ /+ /// Perform four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D) from a and some pre-computed sum of the next 4 round message values (unsigned 32-bit integers), and state variable E from b, and store the updated SHA1 state (A,B,C,D) in dst. func contains the logic functions and round constants. __m128i _mm_sha1rnds4_epu32(__m128i a, __m128i b, const int func) @trusted { static if (SHA_builtins) { return __builtin_ia32_sha1rnds4(cast(int4) a, cast(int4) b, func); } else { assert(0); } } +/ /// Perform the final calculation for the next four SHA256 message values (unsigned 32-bit integers) using previous message values from `a` and `b`, and return the result. __m128i _mm_sha256msg1_epu32(__m128i a, __m128i b) @trusted { static if (GDC_or_LDC_with_SHA) { return __builtin_ia32_sha256msg1(cast(int4) a, cast(int4) b); } else { static uint sigma0(uint x) nothrow @nogc @safe { return bitwiseRotateRight_uint(x, 7) ^ bitwiseRotateRight_uint(x, 18) ^ x >> 3; } int4 dst; int4 a4 = cast(int4) a; int4 b4 = cast(int4) b; uint W4 = b4.array[0]; uint W3 = a4.array[3]; uint W2 = a4.array[2]; uint W1 = a4.array[1]; uint W0 = a4.array[0]; dst.ptr[3] = W3 + sigma0(W4); dst.ptr[2] = W2 + sigma0(W3); dst.ptr[1] = W1 + sigma0(W2); dst.ptr[0] = W0 + sigma0(W1); return cast(__m128i) dst; } } unittest { __m128i a = [15, 20, 130, 12345]; __m128i b = [15, 20, 130, 12345]; __m128i result = _mm_sha256msg1_epu32(a, b); assert(result.array == [671416337, 69238821, 2114864873, 503574586]); } /// Perform 2 rounds of SHA256 operation using an initial SHA256 state (C,D,G,H) from `a`, an initial SHA256 state (A,B,E,F) from `b`, and a pre-computed sum of the next 2 round message values (unsigned 32-bit integers) and the corresponding round constants from k, and return the updated SHA256 state (A,B,E,F). __m128i _mm_sha256msg2_epu32(__m128i a, __m128i b) @trusted { static if (GDC_or_LDC_with_SHA) { return __builtin_ia32_sha256msg2(cast(int4) a, cast(int4) b); } else { static uint sigma1(uint x) nothrow @nogc @safe { return bitwiseRotateRight_uint(x, 17) ^ bitwiseRotateRight_uint(x, 19) ^ x >> 10; } int4 dst; int4 a4 = cast(int4) a; int4 b4 = cast(int4) b; uint W14 = b4.array[2]; uint W15 = b4.array[3]; uint W16 = a4.array[0] + sigma1(W14); uint W17 = a4.array[1] + sigma1(W15); uint W18 = a4.array[2] + sigma1(W16); uint W19 = a4.array[3] + sigma1(W17); dst.ptr[3] = W19; dst.ptr[2] = W18; dst.ptr[1] = W17; dst.ptr[0] = W16; return cast(__m128i) dst; } } unittest { __m128i a = [15, 20, 130, 12345]; __m128i b = [15, 20, 130, 12345]; __m128i result = _mm_sha256msg2_epu32(a, b); assert(result.array == [5324815, 505126944, -2012842764, -1542210977]); } /// Perform an intermediate calculation for the next four SHA256 message values (unsigned 32-bit integers) using previous message values from `a` and `b`, and return the result. __m128i _mm_sha256rnds2_epu32(__m128i a, __m128i b, __m128i k) @trusted { // TODO: the pragma(inline) false prevent a DMD 1.100 // regression in Linux + x86_64 + -b release-unittest, report that version(DigitalMars) { enum bool workaround = true; } else { enum bool workaround = false; } static if (GDC_or_LDC_with_SHA) { return __builtin_ia32_sha256rnds2(cast(int4) a, cast(int4) b, cast(int4) k); } else { static uint Ch(uint x, uint y, uint z) nothrow @nogc @safe { static if (workaround) pragma (inline, false); return z ^ (x & (y ^ z)); } static uint Maj(uint x, uint y, uint z) nothrow @nogc @safe { static if (workaround) pragma (inline, false); return (x & y) | (z & (x ^ y)); } static uint sum0(uint x) nothrow @nogc @safe { static if (workaround) pragma (inline, false); return bitwiseRotateRight_uint(x, 2) ^ bitwiseRotateRight_uint(x, 13) ^ bitwiseRotateRight_uint(x, 22); } static uint sum1(uint x) nothrow @nogc @safe { static if (workaround) pragma (inline, false); return bitwiseRotateRight_uint(x, 6) ^ bitwiseRotateRight_uint(x, 11) ^ bitwiseRotateRight_uint(x, 25); } int4 dst; int4 a4 = cast(int4) a; int4 b4 = cast(int4) b; int4 k4 = cast(int4) k; const A0 = b4.array[3]; const B0 = b4.array[2]; const C0 = a4.array[3]; const D0 = a4.array[2]; const E0 = b4.array[1]; const F0 = b4.array[0]; const G0 = a4.array[1]; const H0 = a4.array[0]; const W_K0 = k4.array[0]; const W_K1 = k4.array[1]; const A1 = Ch(E0, F0, G0) + sum1(E0) + W_K0 + H0 + Maj(A0, B0, C0) + sum0(A0); const B1 = A0; const C1 = B0; const D1 = C0; const E1 = Ch(E0, F0, G0) + sum1(E0) + W_K0 + H0 + D0; const F1 = E0; const G1 = F0; const H1 = G0; const A2 = Ch(E1, F1, G1) + sum1(E1) + W_K1 + H1 + Maj(A1, B1, C1) + sum0(A1); const B2 = A1; const C2 = B1; const D2 = C1; const E2 = Ch(E1, F1, G1) + sum1(E1) + W_K1 + H1 + D1; const F2 = E1; const G2 = F1; const H2 = G1; dst.ptr[3] = A2; dst.ptr[2] = B2; dst.ptr[1] = E2; dst.ptr[0] = F2; return cast(__m128i) dst; } } unittest { __m128i a = [15, 20, 130, 12345]; __m128i b = [15, 20, 130, 12345]; __m128i k = [15, 20, 130, 12345]; __m128i result = _mm_sha256rnds2_epu32(a, b, k); assert(result.array == [1384123044, -2050674062, 327754346, 956342016]); } private uint bitwiseRotateRight_uint(const uint value, const uint count) @safe { assert(count < 8 * uint.sizeof); return cast(uint) ((value >> count) | (value << (uint.sizeof * 8 - count))); }