/** * SSSE3 intrinsics. * https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=SSSE3 * * Copyright: Guillaume Piolat 2021. * Johan Engelen 2021. * License: $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0) */ module inteli.tmmintrin; public import inteli.types; import inteli.internals; public import inteli.pmmintrin; import inteli.mmx; nothrow @nogc: // SSSE3 instructions // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=SSSE3 // Note: this header will work whether you have SSSE3 enabled or not. // With LDC, use "dflags-ldc": ["-mattr=+ssse3"] or equivalent to actively // generate SSE3 instructions. // With GDC, use "dflags-gdc": ["-mssse3"] or equivalent to generate SSSE3 instructions. /// Compute the absolute value of packed signed 16-bit integers in `a`. __m128i _mm_abs_epi16 (__m128i a) @trusted { static if (DMD_with_DSIMD) { return cast(__m128i)__simd(XMM.PABSW, a); } else static if (GDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_pabsw128(cast(short8)a); } else static if (LDC_with_ARM64) { return cast(__m128i) vabsq_s16(cast(short8)a); } else { // LDC x86: generate pabsw since LDC 1.1 -O2 short8 sa = cast(short8)a; for (int i = 0; i < 8; ++i) { short s = sa.array[i]; sa.ptr[i] = s >= 0 ? s : cast(short)(-cast(int)(s)); } return cast(__m128i)sa; } } unittest { __m128i A = _mm_setr_epi16(0, -1, -32768, 32767, 10, -10, 1000, -1000); short8 B = cast(short8) _mm_abs_epi16(A); short[8] correct = [0, 1, -32768, 32767, 10, 10, 1000, 1000]; assert(B.array == correct); } /// Compute the absolute value of packed signed 32-bit integers in `a`. __m128i _mm_abs_epi32 (__m128i a) @trusted { static if (DMD_with_DSIMD) { return cast(__m128i)__simd(XMM.PABSD, cast(int4)a); } else static if (GDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_pabsd128(cast(int4)a); } else static if (LDC_with_ARM64) { return cast(__m128i) vabsq_s32(cast(int4)a); } else { // LDC x86: generates pabsd since LDC 1.1 -O2 int4 sa = cast(int4)a; for (int i = 0; i < 4; ++i) { int s = sa.array[i]; sa.ptr[i] = s >= 0 ? s : -s; } return cast(__m128i)sa; } } unittest { __m128i A = _mm_setr_epi32(0, -1, -2_147_483_648, -2_147_483_647); int4 B = cast(int4) _mm_abs_epi32(A); int[4] correct = [0, 1, -2_147_483_648, 2_147_483_647]; assert(B.array == correct); } /// Compute the absolute value of packed signed 8-bit integers in `a`. __m128i _mm_abs_epi8 (__m128i a) @trusted { static if (DMD_with_DSIMD) { return cast(__m128i)__simd(XMM.PABSB, cast(byte16)a); } else static if (GDC_with_SSSE3) { alias ubyte16 = __vector(ubyte[16]); return cast(__m128i) __builtin_ia32_pabsb128(cast(ubyte16)a); } else static if (LDC_with_ARM64) { return cast(__m128i) vabsq_s8(cast(byte16)a); } else static if (LDC_with_optimizations) { // LDC x86: generates pabsb since LDC 1.1 -O1 // arm64: generates abs since LDC 1.8 -O1 enum ir = ` %n = sub <16 x i8> , %0 %s = icmp slt <16 x i8> , %0 %r = select <16 x i1> %s, <16 x i8> %0, <16 x i8> %n ret <16 x i8> %r`; return cast(__m128i) LDCInlineIR!(ir, byte16, byte16)(cast(byte16)a); } else { // A loop version like in _mm_abs_epi16/_mm_abs_epi32 would be very slow // in LDC x86 and wouldn't vectorize. Doesn't generate pabsb in LDC though. return _mm_min_epu8(a, _mm_sub_epi8(_mm_setzero_si128(), a)); } } unittest { __m128i A = _mm_setr_epi8(0, -1, -128, -127, 127, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); byte16 B = cast(byte16) _mm_abs_epi8(A); byte[16] correct = [0, 1, -128, 127, 127, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; assert(B.array == correct); } /// Compute the absolute value of packed 64-bit floating-point elements in `a`. /// #BONUS. __m128d _mm_abs_pd (__m128d a) @trusted { long2 mask = 0x7fff_ffff_ffff_ffff; return cast(__m128d)((cast(long2)a) & mask); } unittest { __m128d A = _mm_setr_pd(-42.0f, -double.infinity); __m128d R = _mm_abs_pd(A); double[2] correct = [42.0f, +double.infinity]; assert(R.array == correct); } /// Compute the absolute value of packed signed 16-bit integers in `a`. __m64 _mm_abs_pi16 (__m64 a) @trusted { return to_m64(_mm_abs_epi16(to_m128i(a))); } unittest { __m64 A = _mm_setr_pi16(0, -1, -32768, 32767); short4 B = cast(short4) _mm_abs_pi16(A); short[4] correct = [0, 1, -32768, 32767]; assert(B.array == correct); } /// Compute the absolute value of packed signed 32-bit integers in `a`. __m64 _mm_abs_pi32 (__m64 a) @trusted { return to_m64(_mm_abs_epi32(to_m128i(a))); } unittest { __m64 A = _mm_setr_pi32(-1, -2_147_483_648); int2 B = cast(int2) _mm_abs_pi32(A); int[2] correct = [1, -2_147_483_648]; assert(B.array == correct); } /// Compute the absolute value of packed signed 8-bit integers in `a`. __m64 _mm_abs_pi8 (__m64 a) @trusted { return to_m64(_mm_abs_epi8(to_m128i(a))); } unittest { __m64 A = _mm_setr_pi8(0, -1, -128, -127, 127, 0, 0, 0); byte8 B = cast(byte8) _mm_abs_pi8(A); byte[8] correct = [0, 1, -128, 127, 127, 0, 0, 0]; assert(B.array == correct); } /// Compute the absolute value of packed 32-bit floating-point elements in `a`. /// #BONUS. __m128 _mm_abs_ps (__m128 a) @trusted { __m128i mask = 0x7fffffff; return cast(__m128)((cast(__m128i)a) & mask); } unittest { __m128 A = _mm_setr_ps(-0.0f, 10.0f, -42.0f, -float.infinity); __m128 R = _mm_abs_ps(A); float[4] correct = [0.0f, 10.0f, 42.0f, +float.infinity]; assert(R.array == correct); } /// Concatenate 16-byte blocks in `a` and `b` into a 32-byte temporary result, shift the result right by `count` bytes, and return the low 16 bytes. __m128i _mm_alignr_epi8(ubyte count)(__m128i a, __m128i b) @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_palignr128(cast(long2)a, cast(long2)b, count * 8); } else version(LDC) { static if (count >= 32) { return _mm_setzero_si128(); } else static if (count < 16) { // Generates palignr since LDC 1.1 -O1 // Also generates a single ext instruction on arm64. return cast(__m128i) shufflevectorLDC!(byte16, ( 0 + count), ( 1 + count), ( 2 + count), ( 3 + count), ( 4 + count), ( 5 + count), ( 6 + count), ( 7 + count), ( 8 + count), ( 9 + count), (10 + count), (11 + count), (12 + count), (13 + count), (14 + count), (15 + count))(cast(byte16)b, cast(byte16)a); } else { return cast(__m128i) shufflevectorLDC!(byte16, ( 0 + count) % 32, ( 1 + count) % 32, ( 2 + count) % 32, ( 3 + count) % 32, ( 4 + count) % 32, ( 5 + count) % 32, ( 6 + count) % 32, ( 7 + count) % 32, ( 8 + count) % 32, ( 9 + count) % 32, (10 + count) % 32, (11 + count) % 32, (12 + count) % 32, (13 + count) % 32, (14 + count) % 32, (15 + count) % 32)(cast(byte16)_mm_setzero_si128(), cast(byte16)a); } } else { byte16 ab = cast(byte16)a; byte16 bb = cast(byte16)b; byte16 r; for (int i = 0; i < 16; ++i) { const int srcpos = count + cast(int)i; if (srcpos > 31) { r.ptr[i] = 0; } else if (srcpos > 15) { r.ptr[i] = ab.array[(srcpos) & 15]; } else { r.ptr[i] = bb.array[srcpos]; } } return cast(__m128i)r; } } unittest { __m128i A = _mm_setr_epi8(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); __m128i B = _mm_setr_epi8(17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32); { byte16 C = cast(byte16)_mm_alignr_epi8!0(A ,B); byte[16] correct = [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]; assert(C.array == correct); } { byte16 C = cast(byte16)_mm_alignr_epi8!20(A ,B); byte[16] correct = [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 0, 0, 0, 0]; assert(C.array == correct); } { byte16 C = cast(byte16)_mm_alignr_epi8!34(A ,B); byte[16] correct = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; assert(C.array == correct); } __m128i D = _mm_setr_epi8(-123, -82, 103, -69, 103, -26, 9, 106, 58, -11, 79, -91, 114, -13, 110, 60); __m128i E = _mm_setr_epi8(25, -51, -32, 91, -85, -39, -125, 31, -116, 104, 5, -101, 127, 82, 14, 81); byte16 F = cast(byte16)_mm_alignr_epi8!8(D, E); byte[16] correct = [-116, 104, 5, -101, 127, 82, 14, 81, -123, -82, 103, -69, 103, -26, 9, 106]; assert(F.array == correct); } /// Concatenate 8-byte blocks in `a` and `b` into a 16-byte temporary result, shift the result right by `count` bytes, and return the low 8 bytes. __m64 _mm_alignr_pi8(ubyte count)(__m64 a, __m64 b) @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m64)__builtin_ia32_palignr(cast(long1)a, cast(long1)b, count * 8); } else version(LDC) { static if (count >= 16) { return _mm_setzero_si64(); } else static if (count < 8) { // Note: in LDC x86 this uses a pshufb. // Generates ext in arm64. return cast(__m64) shufflevectorLDC!(byte8, (0 + count), (1 + count), (2 + count), (3 + count), (4 + count), (5 + count), (6 + count), (7 + count))(cast(byte8)b, cast(byte8)a); } else { return cast(__m64) shufflevectorLDC!(byte8, (0 + count)%16, (1 + count)%16, (2 + count)%16, (3 + count)%16, (4 + count)%16, (5 + count)%16, (6 + count)%16, (7 + count)%16)(cast(byte8)_mm_setzero_si64(), cast(byte8)a); } } else { byte8 ab = cast(byte8)a; byte8 bb = cast(byte8)b; byte8 r; for (int i = 0; i < 8; ++i) { const int srcpos = count + cast(int)i; if (srcpos > 15) { r.ptr[i] = 0; } else if (srcpos > 7) { r.ptr[i] = ab.array[(srcpos) & 7]; } else { r.ptr[i] = bb.array[srcpos]; } } return cast(__m64)r; } } unittest { __m64 A = _mm_setr_pi8(1, 2, 3, 4, 5, 6, 7, 8); __m64 B = _mm_setr_pi8(17, 18, 19, 20, 21, 22, 23, 24); { byte8 C = cast(byte8)_mm_alignr_pi8!0(A ,B); byte[8] correct = [17, 18, 19, 20, 21, 22, 23, 24]; assert(C.array == correct); } { byte8 C = cast(byte8)_mm_alignr_pi8!3(A ,B); byte[8] correct = [ 20, 21, 22, 23, 24, 1, 2, 3]; assert(C.array == correct); } { byte8 C = cast(byte8)_mm_alignr_pi8!11(A ,B); byte[8] correct = [4, 5, 6, 7, 8, 0, 0, 0]; assert(C.array == correct); } { byte8 C = cast(byte8)_mm_alignr_pi8!17(A ,B); byte[8] correct = [0, 0, 0, 0, 0, 0, 0, 0]; assert(C.array == correct); } } /// Horizontally add adjacent pairs of 16-bit integers in `a` and `b`, and pack the signed 16-bit results. __m128i _mm_hadd_epi16 (__m128i a, __m128i b) pure @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phaddw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phaddw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_ARM64) { return cast(__m128i)vpaddq_s16(cast(short8)a, cast(short8)b); } else { short8 sa = cast(short8)a; short8 sb = cast(short8)b; short8 r; r.ptr[0] = cast(short)(sa.array[0] + sa.array[1]); r.ptr[1] = cast(short)(sa.array[2] + sa.array[3]); r.ptr[2] = cast(short)(sa.array[4] + sa.array[5]); r.ptr[3] = cast(short)(sa.array[6] + sa.array[7]); r.ptr[4] = cast(short)(sb.array[0] + sb.array[1]); r.ptr[5] = cast(short)(sb.array[2] + sb.array[3]); r.ptr[6] = cast(short)(sb.array[4] + sb.array[5]); r.ptr[7] = cast(short)(sb.array[6] + sb.array[7]); return cast(__m128i)r; } } unittest { __m128i A = _mm_setr_epi16(1, -2, 4, 8, 16, 32, -1, -32768); short8 C = cast(short8) _mm_hadd_epi16(A, A); short[8] correct = [ -1, 12, 48, 32767, -1, 12, 48, 32767]; assert(C.array == correct); } /// Horizontally add adjacent pairs of 32-bit integers in `a` and `b`, and pack the signed 32-bit results. __m128i _mm_hadd_epi32 (__m128i a, __m128i b) pure @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phaddd128(cast(int4)a, cast(int4)b); } else static if (LDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phaddd128(cast(int4)a, cast(int4)b); } else static if (LDC_with_ARM64) { return cast(__m128i)vpaddq_s32(cast(int4)a, cast(int4)b); } else { int4 ia = cast(int4)a; int4 ib = cast(int4)b; int4 r; r.ptr[0] = ia.array[0] + ia.array[1]; r.ptr[1] = ia.array[2] + ia.array[3]; r.ptr[2] = ib.array[0] + ib.array[1]; r.ptr[3] = ib.array[2] + ib.array[3]; return cast(__m128i)r; } } unittest { __m128i A = _mm_setr_epi32(1, -2, int.min, -1); __m128i B = _mm_setr_epi32(1, int.max, 4, -4); int4 C = cast(int4) _mm_hadd_epi32(A, B); int[4] correct = [ -1, int.max, int.min, 0 ]; assert(C.array == correct); } /// Horizontally add adjacent pairs of 16-bit integers in `a` and `b`, and pack the signed 16-bit results. __m64 _mm_hadd_pi16 (__m64 a, __m64 b) @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m64) __builtin_ia32_phaddw(cast(short4)a, cast(short4)b); } else static if (LDC_with_ARM64) { return cast(__m64) vpadd_s16(cast(short4)a, cast(short4)b); } else { // LDC x86: generates phaddw since LDC 1.24 -O2. short4 r; short4 sa = cast(short4)a; short4 sb = cast(short4)b; r.ptr[0] = cast(short)(sa.array[0] + sa.array[1]); r.ptr[1] = cast(short)(sa.array[2] + sa.array[3]); r.ptr[2] = cast(short)(sb.array[0] + sb.array[1]); r.ptr[3] = cast(short)(sb.array[2] + sb.array[3]); return cast(__m64)r; } } unittest { __m64 A = _mm_setr_pi16(1, -2, 4, 8); __m64 B = _mm_setr_pi16(16, 32, -1, -32768); short4 C = cast(short4) _mm_hadd_pi16(A, B); short[4] correct = [ -1, 12, 48, 32767 ]; assert(C.array == correct); } /// Horizontally add adjacent pairs of 32-bit integers in `a` and `b`, /// and pack the signed 32-bit results. __m64 _mm_hadd_pi32 (__m64 a, __m64 b) @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m64) __builtin_ia32_phaddd(cast(int2)a, cast(int2)b); } else static if (LDC_with_ARM64) { return cast(__m64)vpadd_s32(cast(int2)a, cast(int2)b); } else { // LDC x86: generates phaddd since LDC 1.24 -O2 int2 ia = cast(int2)a; int2 ib = cast(int2)b; int2 r; r.ptr[0] = ia.array[0] + ia.array[1]; r.ptr[1] = ib.array[0] + ib.array[1]; return cast(__m64)r; } } unittest { __m64 A = _mm_setr_pi32(int.min, -1); __m64 B = _mm_setr_pi32(1, int.max); int2 C = cast(int2) _mm_hadd_pi32(A, B); int[2] correct = [ int.max, int.min ]; assert(C.array == correct); } /// Horizontally add adjacent pairs of signed 16-bit integers in `a` and `b` using saturation, /// and pack the signed 16-bit results. __m128i _mm_hadds_epi16 (__m128i a, __m128i b) pure @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phaddsw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phaddsw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_ARM64) { // uzp1/uzp2/sqadd sequence short8 sa = cast(short8)a; short8 sb = cast(short8)b; short8 c = shufflevectorLDC!(short8, 0, 2, 4, 6, 8, 10, 12, 14)(sa, sb); short8 d = shufflevectorLDC!(short8, 1, 3, 5, 7, 9, 11, 13, 15)(sa, sb); return cast(__m128i)vqaddq_s16(c, d); } else { // PERF well that doesn't look very fast? short8 sa = cast(short8)a; short8 sb = cast(short8)b; short8 r; r.ptr[0] = saturateSignedIntToSignedShort(sa.array[0] + sa.array[1]); r.ptr[1] = saturateSignedIntToSignedShort(sa.array[2] + sa.array[3]); r.ptr[2] = saturateSignedIntToSignedShort(sa.array[4] + sa.array[5]); r.ptr[3] = saturateSignedIntToSignedShort(sa.array[6] + sa.array[7]); r.ptr[4] = saturateSignedIntToSignedShort(sb.array[0] + sb.array[1]); r.ptr[5] = saturateSignedIntToSignedShort(sb.array[2] + sb.array[3]); r.ptr[6] = saturateSignedIntToSignedShort(sb.array[4] + sb.array[5]); r.ptr[7] = saturateSignedIntToSignedShort(sb.array[6] + sb.array[7]); return cast(__m128i)r; } } unittest { __m128i A = _mm_setr_epi16(1, -2, 4, 8, 16, 32, -1, -32768); short8 C = cast(short8) _mm_hadds_epi16(A, A); short[8] correct = [ -1, 12, 48, -32768, -1, 12, 48, -32768]; assert(C.array == correct); } /// Horizontally add adjacent pairs of signed 16-bit integers in `a` and `b` using saturation, /// and pack the signed 16-bit results. __m64 _mm_hadds_pi16 (__m64 a, __m64 b) @trusted { static if (GDC_with_SSSE3) { return cast(__m64)__builtin_ia32_phaddsw(cast(short4)a, cast(short4)b); } else static if (LDC_with_SSSE3) { // Note: LDC doesn't have __builtin_ia32_phaddsw long2 la; la.ptr[0] = a.array[0]; long2 lb; lb.ptr[0] = b.array[0]; int4 sum = cast(int4)__builtin_ia32_phaddsw128(cast(short8)la, cast(short8)lb); int2 r; r.ptr[0] = sum.array[0]; r.ptr[1] = sum.array[2]; return cast(__m64)r; } else static if (LDC_with_ARM64) { // uzp1/uzp2/sqadd sequence short4 sa = cast(short4)a; short4 sb = cast(short4)b; short4 c = shufflevectorLDC!(short4, 0, 2, 4, 6)(sa, sb); short4 d = shufflevectorLDC!(short4, 1, 3, 5, 7)(sa, sb); return cast(__m64)vqadd_s16(c, d); } else { short4 sa = cast(short4)a; short4 sb = cast(short4)b; short4 r; r.ptr[0] = saturateSignedIntToSignedShort(sa.array[0] + sa.array[1]); r.ptr[1] = saturateSignedIntToSignedShort(sa.array[2] + sa.array[3]); r.ptr[2] = saturateSignedIntToSignedShort(sb.array[0] + sb.array[1]); r.ptr[3] = saturateSignedIntToSignedShort(sb.array[2] + sb.array[3]); return cast(__m64)r; } } unittest { __m64 A = _mm_setr_pi16(-16, 32, -100, -32768); __m64 B = _mm_setr_pi16( 64, 32, 1, 32767); short4 C = cast(short4) _mm_hadds_pi16(A, B); short[4] correct = [ 16, -32768, 96, 32767]; assert(C.array == correct); } /// Horizontally add adjacent pairs of 16-bit integers in `a` and `b`, and pack the signed 16-bit results. __m128i _mm_hsub_epi16 (__m128i a, __m128i b) @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phsubw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phsubw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_ARM64) { // Produce uzp1 uzp2 sub sequence since LDC 1.8 -O1 short8 sa = cast(short8)a; short8 sb = cast(short8)b; short8 c = shufflevectorLDC!(short8, 0, 2, 4, 6, 8, 10, 12, 14)(sa, sb); short8 d = shufflevectorLDC!(short8, 1, 3, 5, 7, 9, 11, 13, 15)(sa, sb); return cast(__m128i)(c - d); } else { short8 sa = cast(short8)a; short8 sb = cast(short8)b; short8 r; r.ptr[0] = cast(short)(sa.array[0] - sa.array[1]); r.ptr[1] = cast(short)(sa.array[2] - sa.array[3]); r.ptr[2] = cast(short)(sa.array[4] - sa.array[5]); r.ptr[3] = cast(short)(sa.array[6] - sa.array[7]); r.ptr[4] = cast(short)(sb.array[0] - sb.array[1]); r.ptr[5] = cast(short)(sb.array[2] - sb.array[3]); r.ptr[6] = cast(short)(sb.array[4] - sb.array[5]); r.ptr[7] = cast(short)(sb.array[6] - sb.array[7]); return cast(__m128i)r; } } unittest { __m128i A = _mm_setr_epi16(short.min, 1, 4, 8, 16, 32, 1, -32768); short8 C = cast(short8) _mm_hsub_epi16(A, A); short[8] correct = [ short.max, -4, -16, -32767, short.max, -4, -16, -32767]; assert(C.array == correct); } /// Horizontally add adjacent pairs of 32-bit integers in `a` and `b`, and pack the signed 32-bit results. __m128i _mm_hsub_epi32 (__m128i a, __m128i b) pure @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phsubd128(cast(int4)a, cast(int4)b); } else static if (LDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phsubd128(cast(int4)a, cast(int4)b); } else static if (LDC_with_ARM64) { // Produce uzp1 uzp2 sub sequence since LDC 1.8 -O1 int4 ia = cast(int4)a; int4 ib = cast(int4)b; int4 c = shufflevectorLDC!(int4, 0, 2, 4, 6)(ia, ib); int4 d = shufflevectorLDC!(int4, 1, 3, 5, 7)(ia, ib); return cast(__m128i)(c - d); } else { int4 ia = cast(int4)a; int4 ib = cast(int4)b; int4 r; r.ptr[0] = ia.array[0] - ia.array[1]; r.ptr[1] = ia.array[2] - ia.array[3]; r.ptr[2] = ib.array[0] - ib.array[1]; r.ptr[3] = ib.array[2] - ib.array[3]; return cast(__m128i)r; } } unittest { __m128i A = _mm_setr_epi32(1, 2, int.min, 1); __m128i B = _mm_setr_epi32(int.max, -1, 4, 4); int4 C = cast(int4) _mm_hsub_epi32(A, B); int[4] correct = [ -1, int.max, int.min, 0 ]; assert(C.array == correct); } /// Horizontally subtract adjacent pairs of 16-bit integers in `a` and `b`, /// and pack the signed 16-bit results. __m64 _mm_hsub_pi16 (__m64 a, __m64 b) @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m64)__builtin_ia32_phsubw(cast(short4)a, cast(short4)b); } else static if (LDC_with_ARM64) { // Produce uzp1 uzp2 sub sequence since LDC 1.3 -O1 short4 sa = cast(short4)a; short4 sb = cast(short4)b; short4 c = shufflevectorLDC!(short4, 0, 2, 4, 6)(sa, sb); short4 d = shufflevectorLDC!(short4, 1, 3, 5, 7)(sa, sb); return cast(__m64)(c - d); } else { // LDC x86: generates phsubw since LDC 1.24 -O2 short4 sa = cast(short4)a; short4 sb = cast(short4)b; short4 r; r.ptr[0] = cast(short)(sa.array[0] - sa.array[1]); r.ptr[1] = cast(short)(sa.array[2] - sa.array[3]); r.ptr[2] = cast(short)(sb.array[0] - sb.array[1]); r.ptr[3] = cast(short)(sb.array[2] - sb.array[3]); return cast(__m64)r; } } unittest { __m64 A = _mm_setr_pi16(short.min, 1, 4, 8); __m64 B = _mm_setr_pi16(16, 32, 1, -32768); short4 C = cast(short4) _mm_hsub_pi16(A, B); short[4] correct = [ short.max, -4, -16, -32767]; assert(C.array == correct); } /// Horizontally subtract adjacent pairs of 32-bit integers in `a` and `b`, /// and pack the signed 32-bit results. __m64 _mm_hsub_pi32 (__m64 a, __m64 b) @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m64)__builtin_ia32_phsubd(cast(int2)a, cast(int2)b); } else static if (LDC_with_ARM64) { // LDC arm64: generates zip1+zip2+sub sequence since LDC 1.8 -O1 int2 ia = cast(int2)a; int2 ib = cast(int2)b; int2 c = shufflevectorLDC!(int2, 0, 2)(ia, ib); int2 d = shufflevectorLDC!(int2, 1, 3)(ia, ib); return cast(__m64)(c - d); } else { // LDC x86: generates phsubd since LDC 1.24 -O2 int2 ia = cast(int2)a; int2 ib = cast(int2)b; int2 r; r.ptr[0] = ia.array[0] - ia.array[1]; r.ptr[1] = ib.array[0] - ib.array[1]; return cast(__m64)r; } } unittest { __m64 A = _mm_setr_pi32(int.min, 1); __m64 B = _mm_setr_pi32(int.max, -1); int2 C = cast(int2) _mm_hsub_pi32(A, B); int[2] correct = [ int.max, int.min ]; assert(C.array == correct); } /// Horizontally subtract adjacent pairs of signed 16-bit integers in `a` and `b` using saturation, /// and pack the signed 16-bit results. __m128i _mm_hsubs_epi16 (__m128i a, __m128i b) pure @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phsubsw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_phsubsw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_ARM64) { // uzp1/uzp2/sqsub sequence short8 sa = cast(short8)a; short8 sb = cast(short8)b; short8 c = shufflevectorLDC!(short8, 0, 2, 4, 6, 8, 10, 12, 14)(sa, sb); short8 d = shufflevectorLDC!(short8, 1, 3, 5, 7, 9, 11, 13, 15)(sa, sb); return cast(__m128i)vqsubq_s16(c, d); } else { short8 sa = cast(short8)a; short8 sb = cast(short8)b; short8 r; r.ptr[0] = saturateSignedIntToSignedShort(sa.array[0] - sa.array[1]); r.ptr[1] = saturateSignedIntToSignedShort(sa.array[2] - sa.array[3]); r.ptr[2] = saturateSignedIntToSignedShort(sa.array[4] - sa.array[5]); r.ptr[3] = saturateSignedIntToSignedShort(sa.array[6] - sa.array[7]); r.ptr[4] = saturateSignedIntToSignedShort(sb.array[0] - sb.array[1]); r.ptr[5] = saturateSignedIntToSignedShort(sb.array[2] - sb.array[3]); r.ptr[6] = saturateSignedIntToSignedShort(sb.array[4] - sb.array[5]); r.ptr[7] = saturateSignedIntToSignedShort(sb.array[6] - sb.array[7]); return cast(__m128i)r; } } unittest { __m128i A = _mm_setr_epi16(1, -2, 4, 8, 32767, -1, -10, 32767); short8 C = cast(short8) _mm_hsubs_epi16(A, A); short[8] correct = [ 3, -4, 32767, -32768, 3, -4, 32767, -32768 ]; assert(C.array == correct); } /// Horizontally subtract adjacent pairs of signed 16-bit integers in `a` and `b` using saturation, /// and pack the signed 16-bit results. __m64 _mm_hsubs_pi16 (__m64 a, __m64 b) @trusted { static if (GDC_with_SSSE3) { return cast(__m64)__builtin_ia32_phsubsw(cast(short4)a, cast(short4)b); } else static if (LDC_with_SSSE3) { // Note: LDC doesn't have __builtin_ia32_phsubsw long2 la; la.ptr[0] = a.array[0]; long2 lb; lb.ptr[0] = b.array[0]; int4 sum = cast(int4)__builtin_ia32_phsubsw128(cast(short8)la, cast(short8)lb); int2 r; r.ptr[0] = sum.array[0]; r.ptr[1] = sum.array[2]; return cast(__m64)r; } else static if (LDC_with_ARM64) { // uzp1/uzp2/sqsub sequence in -O1 short4 sa = cast(short4)a; short4 sb = cast(short4)b; short4 c = shufflevectorLDC!(short4, 0, 2, 4, 6)(sa, sb); short4 d = shufflevectorLDC!(short4, 1, 3, 5, 7)(sa, sb); return cast(__m64)vqsub_s16(c, d); } else { short4 sa = cast(short4)a; short4 sb = cast(short4)b; short4 r; r.ptr[0] = saturateSignedIntToSignedShort(sa.array[0] - sa.array[1]); r.ptr[1] = saturateSignedIntToSignedShort(sa.array[2] - sa.array[3]); r.ptr[2] = saturateSignedIntToSignedShort(sb.array[0] - sb.array[1]); r.ptr[3] = saturateSignedIntToSignedShort(sb.array[2] - sb.array[3]); return cast(__m64)r; } } unittest { __m64 A = _mm_setr_pi16(-16, 32, 100, -32768); __m64 B = _mm_setr_pi16( 64, 30, -9, 32767); short4 C = cast(short4) _mm_hsubs_pi16(A, B); short[4] correct = [ -48, 32767, 34, -32768]; assert(C.array == correct); } /// Vertically multiply each unsigned 8-bit integer from `a` with the corresponding /// signed 8-bit integer from `b`, producing intermediate signed 16-bit integers. /// Horizontally add adjacent pairs of intermediate signed 16-bit integers, /// and pack the saturated results. __m128i _mm_maddubs_epi16 (__m128i a, __m128i b) @trusted { static if (GDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_pmaddubsw128(cast(ubyte16)a, cast(ubyte16)b); } else static if (LDC_with_SSSE3) { return cast(__m128i)__builtin_ia32_pmaddubsw128(cast(byte16)a, cast(byte16)b); } else { // zero-extend a to 16-bit __m128i zero = _mm_setzero_si128(); __m128i a_lo = _mm_unpacklo_epi8(a, zero); __m128i a_hi = _mm_unpackhi_epi8(a, zero); // sign-extend b to 16-bit __m128i b_lo = _mm_unpacklo_epi8(b, zero); __m128i b_hi = _mm_unpackhi_epi8(b, zero); b_lo = _mm_srai_epi16( _mm_slli_epi16(b_lo, 8), 8); b_hi = _mm_srai_epi16( _mm_slli_epi16(b_hi, 8), 8); // Multiply element-wise, no overflow can occur __m128i c_lo = _mm_mullo_epi16(a_lo, b_lo); __m128i c_hi = _mm_mullo_epi16(a_hi, b_hi); // Add pairwise with saturating horizontal add return _mm_hadds_epi16(c_lo, c_hi); } } unittest { __m128i A = _mm_setr_epi8( -1, 10, 100, -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); // u8 __m128i B = _mm_setr_epi8(-128, -30, 100, 127, -1, 2, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0); // i8 short8 C = cast(short8) _mm_maddubs_epi16(A, B); short[8] correct = [ -32768, 26256, 0, 0, 0, 0, 0, 0]; assert(C.array == correct); } /// Vertically multiply each unsigned 8-bit integer from `a` with the corresponding /// signed 8-bit integer from `b`, producing intermediate signed 16-bit integers. /// Horizontally add adjacent pairs of intermediate signed 16-bit integers, /// and pack the saturated results. __m64 _mm_maddubs_pi16 (__m64 a, __m64 b) @trusted { static if (GDC_with_SSSE3) { return cast(__m64)__builtin_ia32_pmaddubsw(cast(ubyte8)a, cast(ubyte8)b); } else static if (LDC_with_SSSE3) { __m128i A = to_m128i(a); __m128i B = to_m128i(b); return to_m64( cast(__m128i)__builtin_ia32_pmaddubsw128(cast(byte16) to_m128i(a), cast(byte16) to_m128i(b))); } else { // zero-extend a to 16-bit __m128i zero = _mm_setzero_si128(); __m128i A = _mm_unpacklo_epi8(to_m128i(a), zero); // sign-extend b to 16-bit __m128i B = _mm_unpacklo_epi8(to_m128i(b), zero); B = _mm_srai_epi16( _mm_slli_epi16(B, 8), 8); // Multiply element-wise, no overflow can occur __m128i c = _mm_mullo_epi16(A, B); // Add pairwise with saturating horizontal add return to_m64( _mm_hadds_epi16(c, zero)); } } unittest { __m64 A = _mm_setr_pi8( -1, 10, 100, -128, 0, 0, 0, 0); // u8 __m64 B = _mm_setr_pi8(-128, -30, 100, 127, -1, 2, 4, 6); // i8 short4 C = cast(short4) _mm_maddubs_pi16(A, B); short[4] correct = [ -32768, 26256, 0, 0]; assert(C.array == correct); } /// Multiply packed signed 16-bit integers in `a` and `b`, producing intermediate signed 32-bit integers. /// Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and return bits `[16:1]`. __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b) @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_pmulhrsw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_pmulhrsw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_ARM64) { int4 mul_lo = vmull_s16(vget_low_s16(cast(short8)a), vget_low_s16(cast(short8)b)); int4 mul_hi = vmull_s16(vget_high_s16(cast(short8)a), vget_high_s16(cast(short8)b)); // Rounding narrowing shift right // narrow = (int16_t)((mul + 16384) >> 15); short4 narrow_lo = vrshrn_n_s32(mul_lo, 15); short4 narrow_hi = vrshrn_n_s32(mul_hi, 15); // Join together. return cast(__m128i) vcombine_s16(narrow_lo, narrow_hi); } else { short8 sa = cast(short8)a; short8 sb = cast(short8)b; short8 r; for (int i = 0; i < 8; ++i) { // I doubted it at first, but an exhaustive search show this to be equivalent to Intel pseudocode. r.ptr[i] = cast(short) ( (sa.array[i] * sb.array[i] + 0x4000) >> 15); } return cast(__m128i)r; } } unittest { __m128i A = _mm_setr_epi16(12345, -32768, 32767, 0, 1, 845, -6999, -1); __m128i B = _mm_setr_epi16(8877, -24487, 15678, 32760, 1, 0, -149, -1); short8 C = cast(short8) _mm_mulhrs_epi16(A, B); short[8] correct = [3344, 24487, 15678, 0, 0, 0, 32, 0]; assert(C.array == correct); } /// Multiply packed signed 16-bit integers in `a` and `b`, producing intermediate signed 32-bit integers. /// Truncate each intermediate integer to the 18 most significant bits, round by adding 1, and return bits `[16:1]`. __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b) @trusted { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m64) __builtin_ia32_pmulhrsw(cast(short4)a, cast(short4)b); } else static if (LDC_with_SSSE3) { return cast(__m64) to_m64( cast(__m128i) __builtin_ia32_pmulhrsw128(cast(short8) to_m128i(a), cast(short8) to_m128i(b))); } else static if (LDC_with_ARM64) { int4 mul = vmull_s16(cast(short4)a, cast(short4)b); // Rounding narrowing shift right // (int16_t)((mul + 16384) >> 15); return cast(__m64) vrshrn_n_s32(mul, 15); } else { short4 sa = cast(short4)a; short4 sb = cast(short4)b; short4 r; for (int i = 0; i < 4; ++i) { r.ptr[i] = cast(short) ( (sa.array[i] * sb.array[i] + 0x4000) >> 15); } return cast(__m64)r; } } unittest { __m64 A = _mm_setr_pi16(12345, -32768, 32767, 0); __m64 B = _mm_setr_pi16(8877, -24487, 15678, 32760); short4 C = cast(short4) _mm_mulhrs_pi16(A, B); short[4] correct = [3344, 24487, 15678, 0]; assert(C.array == correct); } /// Shuffle packed 8-bit integers in `a` according to shuffle control mask in the corresponding 8-bit element of `b`. __m128i _mm_shuffle_epi8 (__m128i a, __m128i b) pure @trusted { // This is the lovely pshufb. // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_pshufb128(cast(ubyte16) a, cast(ubyte16) b); } else static if (LDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_pshufb128(cast(byte16) a, cast(byte16) b); } else static if (LDC_with_ARM64) { byte16 bb = cast(byte16)b; byte16 mask; mask = cast(byte)(0x8F); bb = bb & mask; byte16 r = vqtbl1q_s8(cast(byte16)a, bb); return cast(__m128i)r; } else { byte16 r; byte16 ba = cast(byte16)a; byte16 bb = cast(byte16)b; for (int i = 0; i < 16; ++i) { byte s = bb.array[i]; r.ptr[i] = (s < 0) ? 0 : ba.array[ s & 15 ]; } return cast(__m128i)r; } } unittest { __m128i A = _mm_setr_epi8(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); __m128i B = _mm_setr_epi8(15, -128, 13 + 16, -12, 11, -10, 9, 8, 7, 6, -5, 4, 3, -2, 1, 0); byte16 C = cast(byte16) _mm_shuffle_epi8(A, B); byte[16] correct = [0, 0, 2, 0, 4, 0, 6, 7, 8, 9, 0, 11, 12, 0, 14, 15]; assert(C.array == correct); } /// Shuffle packed 8-bit integers in `a` according to shuffle control mask in the corresponding 8-bit element of `b`. __m64 _mm_shuffle_pi8 (__m64 a, __m64 b) @trusted { // PERF DMD static if (GDC_with_SSSE3) { alias ubyte8 =__vector(ubyte[8]); return cast(__m64) __builtin_ia32_pshufb(cast(ubyte8) a, cast(ubyte8) b); } else static if (LDC_with_SSSE3) { // GDC does proper dance to avoid mmx registers, do it manually in LDC since __builtin_ia32_pshufb doesn't exist there __m128i A = to_m128i(a); __m128i index = to_m128i(b); index = index & _mm_set1_epi32(0xF7F7F7F7); return to_m64( cast(__m128i) __builtin_ia32_pshufb128(cast(byte16)A, cast(byte16) index) ); } else static if (LDC_with_ARM64) { byte8 bb = cast(byte8)b; byte8 mask; mask = cast(byte)(0x87); bb = bb & mask; __m128i l = to_m128i(a); byte8 r = vtbl1_s8(cast(byte16)l, cast(byte8)bb); return cast(__m64)r; } else { byte8 r; byte8 ba = cast(byte8)a; byte8 bb = cast(byte8)b; for (int i = 0; i < 8; ++i) { byte s = bb.array[i]; r.ptr[i] = (s < 0) ? 0 : ba.array[ s & 7 ]; } return cast(__m64)r; } } unittest { __m64 A = _mm_setr_pi8(7, 6, 5, 4, 3, 2, 1, 0); __m64 B = _mm_setr_pi8(7, 6, -5, 4, 3 + 8, -2, 1, 0); byte8 C = cast(byte8) _mm_shuffle_pi8(A, B); byte[8] correct = [0, 1, 0, 3, 4, 0, 6, 7]; assert(C.array == correct); } /// Negate packed 16-bit integers in `a` when the corresponding signed 16-bit integer in `b` is negative. /// Elements in result are zeroed out when the corresponding element in `b` is zero. __m128i _mm_sign_epi16 (__m128i a, __m128i b) pure @safe { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_psignw128(cast(short8)a, cast(short8)b); } else static if (LDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_psignw128(cast(short8)a, cast(short8)b); } else { // LDC arm64: 5 instructions __m128i mask = _mm_srai_epi16(b, 15); __m128i zeromask = _mm_cmpeq_epi16(b, _mm_setzero_si128()); return _mm_andnot_si128(zeromask, _mm_xor_si128(_mm_add_epi16(a, mask), mask)); } } unittest { __m128i A = _mm_setr_epi16(-2, -1, 0, 1, 2, short.min, short.min, short.min); __m128i B = _mm_setr_epi16(-1, 0,-1, 1, -2, -50, 0, 50); short8 C = cast(short8) _mm_sign_epi16(A, B); short[8] correct = [ 2, 0, 0, 1, -2, short.min, 0, short.min]; assert(C.array == correct); } /// Negate packed 32-bit integers in `a` when the corresponding signed 32-bit integer in `b` is negative. /// Elements in result are zeroed out when the corresponding element in `b` is zero. __m128i _mm_sign_epi32 (__m128i a, __m128i b) pure @safe { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_psignd128(cast(short8)a, cast(short8)b); } else static if (LDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_psignd128(cast(short8)a, cast(short8)b); } else { __m128i mask = _mm_srai_epi32(b, 31); __m128i zeromask = _mm_cmpeq_epi32(b, _mm_setzero_si128()); return _mm_andnot_si128(zeromask, _mm_xor_si128(_mm_add_epi32(a, mask), mask)); } } unittest { __m128i A = _mm_setr_epi32(-2, -1, 0, int.max); __m128i B = _mm_setr_epi32(-1, 0, -1, 1); int4 C = cast(int4) _mm_sign_epi32(A, B); int[4] correct = [ 2, 0, 0, int.max]; assert(C.array == correct); } /// Negate packed 8-bit integers in `a` when the corresponding signed 8-bit integer in `b` is negative. /// Elements in result are zeroed out when the corresponding element in `b` is zero. __m128i _mm_sign_epi8 (__m128i a, __m128i b) pure @safe { // PERF DMD static if (GDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_psignb128(cast(ubyte16)a, cast(ubyte16)b); } else static if (LDC_with_SSSE3) { return cast(__m128i) __builtin_ia32_psignb128(cast(byte16)a, cast(byte16)b); } else { __m128i mask = _mm_cmplt_epi8(b, _mm_setzero_si128()); // extend sign bit __m128i zeromask = _mm_cmpeq_epi8(b, _mm_setzero_si128()); return _mm_andnot_si128(zeromask, _mm_xor_si128(_mm_add_epi8(a, mask), mask)); } } unittest { __m128i A = _mm_setr_epi8(-2, -1, 0, 1, 2, byte.min, byte.min, byte.min, -1, 0,-1, 1, -2, -50, 0, 50); __m128i B = _mm_setr_epi8(-1, 0,-1, 1, -2, -50, 0, 50, -2, -1, 0, 1, 2, byte.min, byte.min, byte.min); byte16 C = cast(byte16) _mm_sign_epi8(A, B); byte[16] correct = [ 2, 0, 0, 1, -2, byte.min, 0, byte.min, 1, 0, 0, 1, -2, 50, 0, -50]; assert(C.array == correct); } /// Negate packed 16-bit integers in `a` when the corresponding signed 16-bit integer in `b` is negative. /// Element in result are zeroed out when the corresponding element in `b` is zero. __m64 _mm_sign_pi16 (__m64 a, __m64 b) @trusted { return to_m64( _mm_sign_epi16( to_m128i(a), to_m128i(b)) ); } unittest { __m64 A = _mm_setr_pi16( 2, short.min, short.min, short.min); __m64 B = _mm_setr_pi16(-2, -50, 0, 50); short4 C = cast(short4) _mm_sign_pi16(A, B); short[4] correct = [-2, short.min, 0, short.min]; assert(C.array == correct); } /// Negate packed 32-bit integers in `a` when the corresponding signed 32-bit integer in `b` is negative. /// Element in result are zeroed out when the corresponding element in `b` is zero. __m64 _mm_sign_pi32 (__m64 a, __m64 b) @trusted { return to_m64( _mm_sign_epi32( to_m128i(a), to_m128i(b)) ); } unittest { __m64 A = _mm_setr_pi32(-2, -100); __m64 B = _mm_setr_pi32(-1, 0); int2 C = cast(int2) _mm_sign_pi32(A, B); int[2] correct = [ 2, 0]; assert(C.array == correct); } /// Negate packed 8-bit integers in `a` when the corresponding signed 8-bit integer in `b` is negative. /// Elements in result are zeroed out when the corresponding element in `b` is zero. __m64 _mm_sign_pi8 (__m64 a, __m64 b) @trusted { return to_m64( _mm_sign_epi8( to_m128i(a), to_m128i(b)) ); } unittest { __m64 A = _mm_setr_pi8(-2, -1, 0, 1, 2, byte.min, byte.min, byte.min); __m64 B = _mm_setr_pi8(-1, 0,-1, 1, -2, -50, 0, 50); byte8 C = cast(byte8) _mm_sign_pi8(A, B); byte[8] correct = [ 2, 0, 0, 1, -2, byte.min, 0, byte.min]; assert(C.array == correct); }