module dlib.util; import dlib.aliases; import dlib.alloc; import xxhash3; import includes; import std.stdio; import std.conv; import std.string; import core.stdc.string : memset; import core.simd; struct DynSlice(T) { T[][] slices; u32 length; u32 capacity; u32 grow_size; } DynSlice!(T) CreateDynSlice(T)(u32 size) { DynSlice!(T) dslice = { slices: MAllocArray!(T[])(size), length: 0, capacity: size, grow_size: size, }; dslice.slices[0] = MAllocArray!(T)(size); return dslice; } u32 Next(T)(DynSlice!(T)* slice) { if (slice.length < slice.capacity) { } return 0; } void Logf(Args...)(string fmt, Args args) { try { writefln(fmt, args); } catch (Exception e) { assert(false, "Incompatible format type"); } } void Log(string str) { writeln(str); } void Log(char* str) { writeln(str); } @nogc u64 KB(u64 v) { return v * 1024; }; @nogc u64 MB(u64 v) { return KB(v) * 1024; }; @nogc u64 GB(u64 v) { return MB(v) * 1024; }; pragma(inline): void ConvertColor(Vec4 *dst, u32 src) { if (src == 0) { dst.rgb = 0.0; dst.a = 1.0; } else { Convert(dst, src); } } pragma(inline): void Convert(Vec4* dst, u32 src) { dst.r = cast(f32)((src >> 0) & 0xFF) / 255.0; dst.g = cast(f32)((src >> 8) & 0xFF) / 255.0; dst.b = cast(f32)((src >> 16) & 0xFF) / 255.0; dst.a = cast(f32)((src >> 24) & 0xFF) / 255.0; } bool BitEq(u64 l, u64 r) { return (l & r) == r; } struct Node(T) { Node!(T)* next; T value; } struct SLList(T) { Node!(T)* first; Node!(T)* last; } pragma(inline): bool CheckNil(T)(Node!(T)* nil, Node!(T)* node) { return node == null || node == nil; } pragma(inline): void ConcatInPlace(T)(SLList!(T)* list, SLList!(T)* to_concat) { if (to_concat.first) { if (list.first) { list.last.next = to_concat.first; list.last = to_concat.last; } else { list.first = to_concat.first; list.last = to_concat.last; } memset(to_concat, 0, SLList!(T).sizeof); } } pragma(inline): Node!(T)* Pop(T)(SLList!(T)*list, Node!(T)* nil) { Node!(T)* node = list.first; if (list.first == list.last) { list.first = list.last = nil; } else { list.first = list.first.next; } return node; } pragma(inline): void Remove(T)(SLList!(T)*list, Node!(T)* node, Node!(T)* prev, Node!(T)* nil) { node.next = nil; if (list.first == list.last) { list.first = list.last = nil; } else if (list.first == node) { list.first = node.next; } else if (list.last == node) { list.last = prev; prev.next = nil; } else { prev.next = node.next; } } pragma(inline): void PushFront(T)(SLList!(T)*list, Node!(T)* node, Node!(T)* nil) { if (CheckNil(nil, list.first)) { list.first = list.last = node; node.next = nil; } else { node.next = list.first; list.first = node; } } pragma(inline): void Push(T)(SLList!(T)*list, Node!(T)* node, Node!(T)* nil) { if (CheckNil(nil, list.first)) { list.first = list.last = node; node.next = nil; } else { list.last.next = node; list.last = node; node.next = nil; } } struct KVPair(K, V) { K key; V value; } struct Result(V) { V value; bool ok; } struct HashTable(K, V) { alias P = KVPair!(K, V); SLList!(P) free_lists; SLList!(P)[] lists; Node!(P)* nil; u64 node_count; u64 list_count; void opIndexAssign(V value, K key) { Push(&this, key, value); } Result!(V) opIndex(K key) { P* pair = Search(&this, key); assert(pair != null, "HashTable key index failure: Result must be present"); Result!(V) result = { ok: false }; if (pair != null) { result.value = pair.value; result.ok = true; } return result; } Result!(V) opIndexUnary(string s: "~")(K key) { return Delete(&this, key); } } HashTable!(K, V) CreateHashTable(K, V)(u64 size) { auto nil = Alloc!(Node!(KVPair!(K, V))); auto lists = AllocArray!(SLList!(KVPair!(K, V)))(size); HashTable!(K, V) table = { lists: lists, list_count: size, nil: nil, free_lists: { first: nil, last: nil, }, }; foreach(list; table.lists) { list.first = nil; list.last = nil; } return table; } pragma(inline): void Clear(K, V)(HashTable!(K, V)* ht) { table.count = 0; foreach(i, list; ht.lists) { ConcatInPlace(&ht.free_lists, ht.lists.ptr + i); } } pragma(inline): Node!(KVPair!(K, V))* Push(K, V)(HashTable!(K, V)* ht, K key, V value) { alias P = KVPair!(K, V); alias N = Node!(P); N* node = ht.nil; if (ht.free_lists.first != ht.nil) { node = Pop(&ht.free_lists, ht.nil); } else { node = Alloc!(N); } node.next = ht.nil; node.value.key = key; node.value.value = value; Push(GetList(ht, key), node, ht.nil); ht.node_count += 1; return node; } pragma(inline): KVPair!(K, V)* Search(K, V)(HashTable!(K, V)* ht, K key) { KVPair!(K, V)* result = null; auto list = GetList(ht, key); for(auto node = list.first; node != ht.nil; node = node.next) { if (node.value.key == key) { result = &node.value; break; } } return result; } pragma(inline): SLList!(KVPair!(K, V))* GetList(K, V)(HashTable!(K, V)* ht, K key) { u64 hash = Hash(&key); u64 index = hash % ht.list_count; return ht.lists.ptr + index; } pragma(inline): Result!(V) Delete(K, V)(HashTable!(K, V)* ht, K key) { Result!(V) result = { ok: false }; auto list = GetList(ht, key); auto prev = ht.nil; for(auto node = list.first; node != ht.nil; node = node.next) { if (node.value.key == key) { Remove(list, node, prev, ht.nil); result.ok = true; result.value = node.value.value; memset(&node.value, 0, node.value.sizeof); Push(&ht.free_lists, node, ht.nil); break; } } return result; } const u64 HASH_SEED = 5995; pragma(inline): u64 Hash(T)(T[] value) { return xxh3_64bits_withSeed(value.ptr, (T.sizeof * value.length) / u8.sizeof, HASH_SEED); } pragma(inline): u64 Hash(T)(T* value) { return xxh3_64bits_withSeed(value, T.sizeof / u8.sizeof, HASH_SEED); } pragma(inline): u64 Hash(string str) { return xxh3_64bits_withSeed(str.ptr, str.length, HASH_SEED); } pragma(inline): u64 RDTSC() { union u64_split { u64 full; struct { u32 lower; u32 upper; }; }; u64_split val; u64_split* valp = &val; asm { cpuid; rdtsc; mov R8, valp; mov valp.upper.offsetof[R8], EDX; mov valp.lower.offsetof[R8], EAX; } return val.full; } pragma(inline): u64 OSTimeFreq() { version (linux) { u64 freq = 1000000; } return freq; } pragma(inline): u64 OSTime() { version(linux) { import core.sys.linux.sys.time; timeval value; gettimeofday(&value, null); u64 time = OSTimeFreq() * cast(u64)(value.tv_sec) + cast(u64)(value.tv_usec); } return time; } // TODO: probably needs improvement/testing struct IntervalTimer { u64 cpu_freq; u64 interval; u64 prev; } IntervalTimer CreateTimer(u64 fps) { IntervalTimer timer; u64 ms_to_wait = 50; u64 os_freq = OSTimeFreq(); u64 cpu_start = RDTSC(); u64 os_start = OSTime(); u64 os_end = 0; u64 os_elapsed = 0; u64 os_wait_time = os_freq * ms_to_wait / 1000; while (os_elapsed < os_wait_time) { os_end = OSTime(); os_elapsed = os_end - os_start; } u64 cpu_end = RDTSC(); u64 cpu_elapsed = cpu_end - cpu_start; u64 cpu_freq = 0; if (os_elapsed) { cpu_freq = os_freq * cpu_elapsed / os_elapsed; } timer.cpu_freq = cpu_freq; timer.interval = cpu_freq/(fps+1); timer.prev = RDTSC(); return timer; } pragma(inline): bool CheckTimer(IntervalTimer* t) { bool result = false; u64 time = RDTSC(); if (time - t.prev > t.interval) { result = true; t.prev = time; } return result; } struct Timer { u64 cpu_freq; u64 prev; } Timer CreateTimer() { u64 ms_to_wait = 50; u64 os_freq = OSTimeFreq(); u64 cpu_start = RDTSC(); u64 os_start = OSTime(); u64 os_end = 0; u64 os_elapsed = 0; u64 os_wait_time = os_freq * ms_to_wait / 1000; while (os_elapsed < os_wait_time) { os_end = OSTime(); os_elapsed = os_end - os_start; } u64 cpu_end = RDTSC(); u64 cpu_elapsed = cpu_end - cpu_start; u64 cpu_freq = 0; if (os_elapsed) { cpu_freq = os_freq * cpu_elapsed / os_elapsed; } Timer timer = { cpu_freq: cpu_freq, prev: RDTSC(), }; return timer; } pragma(inline): f32 DeltaTime(Timer* t) { u64 time = RDTSC(); u64 step = time - t.prev; t.prev = time; return cast(f32)(step) / cast(f32)(t.cpu_freq); } static string IntToStr(int n) nothrow pure @safe { string result; static immutable string[] table = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]; if (n < table.length) { result = table[n]; } else { result = to!string(n); } return result; } static string GenerateLoop(string format_string, int N)() nothrow pure @safe { string result; for (int i = 0; i < N; i++) { result ~= format_string.replace("@", IntToStr(i)); } return result; } void MemCpy(void* dst_p, void* src_p, u64 length) { u8* dst = cast(u8*)dst_p; u8* src = cast(u8*)src_p; u64 remaining = length; if (remaining >= 64) { for(u64 i = 0; i < length; i += 64) { asm { mov R8, src; mov R9, dst; add R8, i; movdqu XMM0, [R8+00]; movdqu XMM1, [R8+16]; movdqu XMM2, [R8+32]; movdqu XMM3, [R8+48]; add R9, i; movdqu [R9+00], XMM0; movups [R9+16], XMM1; movups [R9+32], XMM2; movups [R9+48], XMM3; sub remaining, 64; } } } if (remaining >= 32) { for(u64 i = remaining; i < length; i += 32) { asm { mov R8, src; mov R9, dst; add R8, i; movdqu XMM0, [R8+00]; movdqu XMM1, [R8+16]; add R9, i; movdqu [R9+00], XMM0; movdqu [R9+16], XMM1; sub remaining, 32; } } } for(u64 i = remaining; i < length; i += 1) { dst[i] = src[i]; } } u8[] Embed(string file_name) { import std.file; return cast(u8[])read(file_name); }