VulkanRenderer/vulkan.d
2025-11-06 08:03:06 +11:00

3424 lines
84 KiB
D

import vulkan_funcs;
import vulkan_logging;
import vulkan_util;
import std.stdio;
import std.algorithm.comparison;
import core.stdc.string : strcmp, memcpy;
import core.stdc.stdio : Printf = printf;
import std.format : sformat;
import std.math.rounding : Ceil = ceil;
version(VULKAN_DEBUG)
{
const BUILD_DEBUG = true;
}
else
{
const BUILD_DEBUG = false;
}
alias InitRenderer = Init;
alias Renderer = Vulkan;
alias Shader = VkShaderModule;
alias Pipeline = u32;
alias Attribute = VkVertexInputAttributeDescription;
alias SpecEntry = VkSpecializationMapEntry;
alias RenderPass = VkRenderPass;
alias DescSetLayout = VkDescriptorSetLayout;
alias PipelineLayout = VkPipelineLayout;
alias DescLayoutBinding = VkDescriptorSetLayoutBinding;
alias DescWrite = VkWriteDescriptorSet;
struct DescSet
{
VkDescriptorSet handle;
u32 dynamic_count;
}
bool g_VLAYER_SUPPORT = false;
version(VK_DEBUG_PRINTF)
{
bool g_DEBUG_PRINTF = true;
}
else
{
bool g_DEBUG_PRINTF = false;
}
const FRAME_OVERLAP = 2;
const MAX_SETS = 1000;
const DESC_ARRAY_SIZE = 256;
version(linux)
{
const string[] VULKAN_LIBS = [ "libvulkan.so.1", "libvulkan.so" ];
struct PlatformHandles
{
xcb_connection_t *conn;
xcb_window_t window;
}
}
version(Windows)
{
const string[] VULKAN_LIBS = [ "vulkan-1.dll" ];
struct PlatformHandles
{
HINSTANCE hinstance;
HWND hwnd;
}
}
const char*[] VK_INSTANCE_LAYERS = [];
const char*[] VK_INSTANCE_LAYERS_DEBUG = [ "VK_LAYER_KHRONOS_validation" ];
version(linux)
{
const char*[] VK_INSTANCE_EXT = [ cast(char*)VK_KHR_SURFACE_EXTENSION_NAME, cast(char*)VK_KHR_XCB_SURFACE_EXTENSION_NAME ];
const char*[] VK_INSTANCE_EXT_DEBUG = VK_INSTANCE_EXT ~ [ cast(char*)VK_EXT_DEBUG_UTILS_EXTENSION_NAME ];
}
version(Windows)
{
const char*[] VK_INSTANCE_EXT = [ cast(char*)VK_KHR_SURFACE_EXTENSION_NAME, cast(char*)VK_KHR_WIN32_SURFACE_EXTENSION_NAME ];
const char*[] VK_INSTANCE_EXT_DEBUG = VK_INSTANCE_EXT ~ [ cast(char*)VK_EXT_DEBUG_UTILS_EXTENSION_NAME ];
}
const char*[] VK_BASE_DEVICE_EXTENSIONS = [
cast(char*)VK_KHR_SWAPCHAIN_EXTENSION_NAME,
cast(char*)VK_KHR_UNIFORM_BUFFER_STANDARD_LAYOUT_EXTENSION_NAME,
cast(char*)VK_KHR_8BIT_STORAGE_EXTENSION_NAME,
cast(char*)VK_KHR_SYNCHRONIZATION_2_EXTENSION_NAME,
];
const char*[] VK_AMD_DEVICE_EXTENSIONS = [
cast(char*)VK_AMD_SHADER_INFO_EXTENSION_NAME,
];
version(AMD_GPU)
{
version(VULKAN_DEBUG) const char*[] VK_DEVICE_EXTENSIONS = VK_AMD_DEVICE_EXTENSIONS ~ VK_BASE_DEVICE_EXTENSIONS;
}
else
{
const char*[] VK_DEVICE_EXTENSIONS = VK_BASE_DEVICE_EXTENSIONS;
}
const VkFormat[] VK_IMAGE_FORMATS = [
VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R8G8B8A8_UNORM,
];
enum ShaderStage : VkShaderStageFlagBits
{
None = cast(VkShaderStageFlagBits)0,
Vertex = VK_SHADER_STAGE_VERTEX_BIT,
Fragment = VK_SHADER_STAGE_FRAGMENT_BIT,
Compute = VK_SHADER_STAGE_COMPUTE_BIT,
All = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_COMPUTE_BIT,
}
alias SS = ShaderStage;
enum InputRate : int
{
Vertex = VK_VERTEX_INPUT_RATE_VERTEX,
Instance = VK_VERTEX_INPUT_RATE_INSTANCE,
}
alias IR = InputRate;
enum ImageUsage : VkImageUsageFlagBits
{
None = cast(VkImageUsageFlagBits)0,
Draw = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
Depth = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
Texture = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
Convert = VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
Storage = VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
Swapchain = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
}
alias IU = ImageUsage;
enum FrontFace: VkFrontFace
{
CCW = VK_FRONT_FACE_COUNTER_CLOCKWISE,
CW = VK_FRONT_FACE_CLOCKWISE,
}
alias FF = FrontFace;
enum Format : VkFormat
{
UINT = VK_FORMAT_R32_UINT,
R_F32 = VK_FORMAT_R32_SFLOAT,
RG_F32 = VK_FORMAT_R32G32_SFLOAT,
RGB_F32 = VK_FORMAT_R32G32B32_SFLOAT,
RGBA_F32 = VK_FORMAT_R32G32B32A32_SFLOAT,
RGBA_UINT = VK_FORMAT_B8G8R8A8_UINT,
R_U32 = VK_FORMAT_R32_UINT,
RG_U32 = VK_FORMAT_R32G32_UINT,
RGBA_UNORM = VK_FORMAT_R8G8B8A8_UNORM,
RGBA_SRGB = VK_FORMAT_R8G8B8A8_SRGB,
D_SF32 = VK_FORMAT_D32_SFLOAT,
}
alias FMT = Format;
enum BufferType : VkBufferUsageFlagBits
{
None = cast(VkBufferUsageFlagBits)0,
Vertex = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
Index = VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
Uniform = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
Storage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
Staging = VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
BufferView = VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
}
alias BT = BufferType;
enum ImageLayout : VkImageLayout
{
Undefined = VK_IMAGE_LAYOUT_UNDEFINED,
General = VK_IMAGE_LAYOUT_GENERAL,
ColorAttach = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
}
struct Image
{
VkImage image;
VmaAllocation alloc;
Format format;
VkImageLayout layout;
u32 w;
u32 h;
bool depth_image;
ImageUsage usage;
}
struct BufferView
{
Buffer base;
VkBufferView view;
alias base this;
}
struct ImageView
{
Image base;
VkImageView view;
alias base this;
}
struct Buffer
{
VkBuffer buffer;
VmaAllocation alloc;
u64 size;
bool dynamic;
}
struct Descriptor
{
DescType type;
u32 binding;
union
{
Buffer buf;
Image image;
ImageView view;
BufferView buf_view;
}
}
struct ShaderUniforms
{
f32 placeholder;
}
enum PipelineType : int
{
Graphics,
Compute,
}
alias PT = PipelineType;
enum BlendFactor : VkBlendFactor
{
Zero = VK_BLEND_FACTOR_ZERO,
One = VK_BLEND_FACTOR_ONE,
SrcColor = VK_BLEND_FACTOR_SRC_COLOR,
OneMinusSrcColor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR,
DstColor = VK_BLEND_FACTOR_DST_COLOR,
OneMinusDstColor = VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR,
SrcAlpha = VK_BLEND_FACTOR_SRC_ALPHA,
OneMinusSrcAlpha = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
DstAlpha = VK_BLEND_FACTOR_DST_ALPHA,
OneMinusDstAlpha = VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA,
ConstColor = VK_BLEND_FACTOR_CONSTANT_COLOR,
OneMinusConstColor = VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR,
ConstAlpha = VK_BLEND_FACTOR_CONSTANT_ALPHA,
OneMinusConstAlpha = VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA,
SrcAlphaSaturate = VK_BLEND_FACTOR_SRC_ALPHA_SATURATE,
Src1Color = VK_BLEND_FACTOR_SRC1_COLOR,
OneMinusSrc1Color = VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
Src1Alpha = VK_BLEND_FACTOR_SRC1_ALPHA,
OneMinusSrc1Alpha = VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA,
}
alias BF = BlendFactor;
enum BlendOp : VkBlendOp
{
Add = VK_BLEND_OP_ADD,
Sub = VK_BLEND_OP_SUBTRACT,
ReverseSub = VK_BLEND_OP_REVERSE_SUBTRACT,
Min = VK_BLEND_OP_MIN,
Max = VK_BLEND_OP_MAX,
}
alias BO = BlendOp;
struct Specialization
{
u64 size;
SpecEntry[] entries;
void* data;
}
struct GfxPipelineInfo
{
u8[] vertex_shader;
u8[] frag_shader;
InputRate input_rate;
u32 input_rate_stride;
Attribute[] vertex_attributes;
Specialization vert_spec;
Specialization frag_spec;
bool self_dependency;
PipelineLayout layout;
FrontFace front_face;
VkBlendFactor src_color;
VkBlendFactor dst_color;
VkBlendOp color_op;
VkBlendFactor src_alpha;
VkBlendFactor dst_alpha;
VkBlendOp alpha_op;
}
struct CompPipelineInfo
{
u8[] shader;
Specialization spec;
PipelineLayout layout;
}
enum StepInitialized : u32
{
Renderer = 1,
Instance,
Debug,
Surface,
Device,
Vma,
Buffers,
FrameStructures,
Swapchain,
DrawImages,
DescriptorPools,
Pipelines,
}
alias SI = StepInitialized;
enum DescType : VkDescriptorType
{
None = u32.max,
Sampler = VK_DESCRIPTOR_TYPE_SAMPLER,
CombinedSampler = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
Image = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
StorageImage = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
UniformTexelBuf = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
StorageTexelBuf = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
Uniform = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
DynamicUniform = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
Storage = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
StorageDynamic = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC,
InputAttach = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
Max,
}
alias DT = DescType;
struct MappedBuffer(T)
{
Buffer base;
T[] data;
u64 offset;
alias base this;
}
struct Vulkan
{
Arena arena;
Arena[FRAME_OVERLAP] frame_arenas;
u32 frame_index;
u32 semaphore_index;
SLList!(SI) cleanup_list;
PlatformHandles platform_handles;
u32 window_h, window_w;
VkDebugUtilsMessengerEXT dbg_msg;
VkInstance instance;
VkSurfaceKHR surface;
VkPhysicalDevice physical_device;
VkDevice device;
VmaAllocator vma;
VkSwapchainKHR swapchain;
VkSurfaceFormatKHR surface_format;
VkPresentModeKHR present_mode;
VkExtent3D swapchain_extent;
VkRenderPass render_pass;
VkFramebuffer framebuffer;
ImageView[] present_images;
u32 image_index;
ImageView draw_image;
ImageView depth_image;
VkCommandPool[FRAME_OVERLAP] cmd_pools;
VkCommandBuffer[FRAME_OVERLAP] cmds;
VkCommandPool comp_cmd_pool;
VkCommandBuffer comp_cmd;
VkFence comp_fence;
VkSemaphore[] submit_sems;
VkSemaphore[FRAME_OVERLAP] acquire_sems;
VkFence[FRAME_OVERLAP] render_fences;
VkCommandPool imm_pool;
VkCommandBuffer imm_cmd;
VkFence imm_fence;
VkDescriptorPool active_pool;
SLList!(VkDescriptorPool) full_pools;
VkSampler nearest_sampler;
VkSampler oit_sampler;
PipelineHandles[] pipeline_handles;
u32 pipeline_count;
VkPipeline[FRAME_OVERLAP] last_pipeline;
DescSetLayout global_set_layout;
DescSet global_set;
MappedBuffer!(u8) transfer_buf;
QueueInfo queues;
Pipeline r_to_rgba_pipeline;
Pipeline rg_to_rgba_pipeline;
Pipeline rgb_to_rgba_pipeline;
DescSet conv_desc_set;
VkDescriptorSetLayout conv_desc_layout;
VkPipelineLayout conv_pipeline_layout;
VkPipeline last_comp_pipeline;
bool compute_pass_started;
BufferView a_buffer_view;
ImageView aux_image;
f32[4] color_clear;
f32[4] depth_clear;
alias queues this;
}
struct ConvPushConst
{
u32 x;
u32 y;
}
struct PipelineHandles
{
VkPipeline handle;
VkPipelineBindPoint type;
VkPipelineLayout layout;
Pipeline index;
}
struct QueueInfo
{
i32 gfx_index, tfer_index;
VkQueue gfx_queue, tfer_queue;
bool single_queue;
}
u8[] CONVERT_SHADER_BYTES = cast(u8[])import("convert.comp.spv");
Vulkan
Init(PlatformHandles platform_handles, u64 permanent_mem, u64 frame_mem)
{
bool success = true;
Vulkan vk = {
arena: CreateArena(permanent_mem),
frame_arenas: [
CreateArena(frame_mem),
CreateArena(frame_mem),
],
platform_handles: platform_handles,
};
Push(&vk, SI.Renderer);
success = LoadGlobalFunctions();
if(success) success = InitInstance(&vk);
if(success)
{
LoadInstanceFunctions(&vk);
EnableVLayers(&vk);
}
if(success) success = InitSurface(&vk);
if(success) success = InitDevice(&vk);
if(success) success = InitVMA(&vk);
if(success) success = CreateSwapchain(&vk);
if(success) success = CreateDrawImages(&vk);
if(success) success = InitFrameStructures(&vk);
if(success) InitDescriptors(&vk);
if(success) success = InitGlobalDescSet(&vk);
if(success) InitPipelines(&vk);
if(success) InitBuffers(&vk);
if(success) InitConversionPipeline(&vk);
if(success) InitFramebufferAndRenderPass(&vk);
assert(success, "Error initializing vulkan");
return vk;
}
void
InitPipelines(Vulkan* vk)
{
vk.pipeline_handles = Alloc!(PipelineHandles)(&vk.arena, 128);
vk.pipeline_count += 1;
}
DescSetLayout
CreateDescSetLayout(Vulkan* vk, DescLayoutBinding[] bindings)
{
VkDescriptorSetLayoutCreateInfo layout_info = {
sType: VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
bindingCount: cast(u32)bindings.length,
pBindings: bindings.ptr,
};
DescSetLayout layout;
VkResult result = vkCreateDescriptorSetLayout(vk.device, &layout_info, null, &layout);
VkCheckA("vkCreateDescriptorSetLayout failure", result);
return layout;
}
DescSet
AllocDescSet(Vulkan* vk, DescSetLayout layout, u32 dynamic_count = 0)
{
VkDescriptorSetAllocateInfo alloc_info = {
sType: VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
descriptorSetCount: 1,
pSetLayouts: &layout,
descriptorPool: vk.active_pool,
};
DescSet set = {
dynamic_count: dynamic_count,
};
VkResult result = vkAllocateDescriptorSets(vk.device, &alloc_info, &set.handle);
if(result == VK_ERROR_OUT_OF_POOL_MEMORY || result == VK_ERROR_FRAGMENTED_POOL)
{
PushDescriptorPool(vk);
alloc_info.descriptorPool = vk.active_pool;
result = vkAllocateDescriptorSets(vk.device, &alloc_info, &set.handle);
VkCheckA("vkAllocateDescriptorSets failure", result);
}
return set;
}
PipelineLayout
CreatePipelineLayout(T)(Vulkan* vk, T layouts, u32 push_const_size, bool compute = false) if(is(T: DescSetLayout) || is(T: DescSetLayout[]))
{
VkShaderStageFlagBits stage = (compute ? VK_SHADER_STAGE_COMPUTE_BIT : VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT);
DescSetLayout[] desc_layouts;
static if(is(T: DescSetLayout))
{
desc_layouts = Alloc!(DescSetLayout)(&vk.frame_arenas[vk.frame_index], 2);
desc_layouts[0] = vk.global_set_layout;
desc_layouts[1] = layouts;
}
else static if(is(T: DescSetLayout[]))
{
desc_layouts = Alloc!(DescSetLayout)(&vk.frame_arenas[vk.frame_index], layouts.length + 1);
desc_layouts[0] = vk.global_set_layout;
foreach(i; 0 .. layouts.length)
{
desc_layouts[i+1] = layouts[i];
}
}
VkPushConstantRange const_range = {
offset: 0,
size: cast(VkDeviceSize)push_const_size,
stageFlags: stage,
};
VkPipelineLayoutCreateInfo layout_info = {
sType: VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
setLayoutCount: cast(u32)desc_layouts.length,
pSetLayouts: desc_layouts.ptr,
pushConstantRangeCount: (push_const_size > 0 ? 1 : 0),
pPushConstantRanges: (push_const_size > 0 ? &const_range : null),
};
PipelineLayout layout;
VkResult result = vkCreatePipelineLayout(vk.device, &layout_info, null, &layout);
VkCheckA("CreatePipelineLayout failure", result);
return layout;
}
void
InitConversionPipeline(Vulkan* vk)
{
Push(vk, SI.Pipelines);
VkDescriptorSetLayoutBinding[2] layout_bindings = [
{ binding: 0, descriptorType: VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, descriptorCount: 1, stageFlags: VK_SHADER_STAGE_COMPUTE_BIT },
{ binding: 1, descriptorType: VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, descriptorCount: 1, stageFlags: VK_SHADER_STAGE_COMPUTE_BIT },
];
vk.conv_desc_layout = CreateDescSetLayout(vk, layout_bindings);
vk.conv_desc_set = AllocDescSet(vk, vk.conv_desc_layout);
vk.conv_pipeline_layout = CreatePipelineLayout(vk, vk.conv_desc_layout, ConvPushConst.sizeof, true);
u32 channels = 1;
SpecEntry[1] entries = [
{
constantID: 0,
size: u32.sizeof,
offset: 0,
}
];
CompPipelineInfo conv_info = {
shader: CONVERT_SHADER_BYTES,
layout: vk.conv_pipeline_layout,
spec: {
data: &channels,
size: u32.sizeof,
entries: entries,
},
};
vk.r_to_rgba_pipeline = CreateComputePipeline(vk, &conv_info);
channels = 2;
vk.rg_to_rgba_pipeline = CreateComputePipeline(vk, &conv_info);
channels = 3;
vk.rgb_to_rgba_pipeline = CreateComputePipeline(vk, &conv_info);
}
void
CreateBuffer(Vulkan* vk, Buffer* buf, BufferType type, u64 size, bool host_visible, bool dynamic = false)
{
assert(type != BT.None, "CreateBuffer failure: type is None");
u64 buffer_size = (dynamic ? size * FRAME_OVERLAP : size);
VkBufferCreateInfo buffer_info = {
sType: VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
usage: type,
size: buffer_size,
};
VmaAllocationCreateInfo alloc_info = {
usage: VMA_MEMORY_USAGE_UNKNOWN,
flags: VMA_ALLOCATION_CREATE_MAPPED_BIT,
};
if(host_visible)
{
alloc_info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
alloc_info.preferredFlags = VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
}
else
{
buffer_info.usage |= VK_BUFFER_USAGE_TRANSFER_DST_BIT;
alloc_info.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
}
u32[2] indices = [vk.queues.gfx_index, vk.queues.tfer_index];
if(vk.queues.gfx_index != vk.queues.tfer_index)
{
buffer_info.sharingMode = VK_SHARING_MODE_CONCURRENT;
buffer_info.queueFamilyIndexCount = 2;
buffer_info.pQueueFamilyIndices = indices.ptr;
}
VmaAllocationInfo vma_info;
VkResult result = vmaCreateBuffer(vk.vma, &buffer_info, &alloc_info, &buf.buffer, &buf.alloc, &vma_info);
// TODO: handle errors here then reallocate buffer
VkCheck("CreateBuffer failure: vmaCreateBuffer error", result);
buf.size = buffer_size;
buf.dynamic = dynamic;
}
void
InitBuffers(Vulkan* vk)
{
Push(vk, SI.Buffers);
u64 transfer_size = MB(64);
vk.transfer_buf = CreateMappedBuffer!(u8)(vk, BT.Staging, transfer_size);
}
void
BindBuffers(Vulkan* vk, Buffer* index_buffer, Buffer* vertex_buffer)
{
VkDeviceSize offset = 0;
vkCmdBindIndexBuffer(vk.cmds[vk.frame_index], index_buffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindVertexBuffers(vk.cmds[vk.frame_index], 0, 1, &vertex_buffer.buffer, &offset);
}
void
BindBuffers(T)(Vulkan* vk, MappedBuffer!(u32)* index_buffer, MappedBuffer!(T)* vertex_buffer)
{
VkDeviceSize offset = 0;
vkCmdBindIndexBuffer(vk.cmds[vk.frame_index], index_buffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindVertexBuffers(vk.cmds[vk.frame_index], 0, 1, &vertex_buffer.buffer, &offset);
}
MappedBuffer!(T)
CreateMappedBuffer(T)(Vulkan* vk, BufferType type, u64 count)
{
MappedBuffer!(T) buf;
CreateBuffer(vk, &buf.base, type, T.sizeof * count, true);
buf.data = MapBuffer!(T)(vk, &buf.base, count);
return buf;
}
T[]
MapBuffer(T)(Vulkan* vk, Buffer* buffer, u64 count)
{
void* ptr;
vmaMapMemory(vk.vma, buffer.alloc, &ptr);
return (cast(T*)ptr)[0 .. count];
}
VkImage
CurrentImage(Vulkan* vk)
{
return vk.present_images[vk.image_index].image;
}
void
BeginFrame(Vulkan* vk)
{
// TODO: move vkWaitForFences so it no longer holds up the frame, will need to change how fences are handled in regards to images though
VkResult result = vkWaitForFences(vk.device, 1, vk.render_fences.ptr + vk.frame_index, VK_TRUE, 1000000000);
VkCheckA("BeginFrame failure: vkWaitForFences error", result);
result = vkResetFences(vk.device, 1, vk.render_fences.ptr + vk.frame_index);
VkCheckA("BeginFrame failure: vkResetFences error", result);
result = vkAcquireNextImageKHR(vk.device, vk.swapchain, 1000000000, vk.acquire_sems[vk.frame_index], null, &vk.image_index);
if(result == VK_ERROR_OUT_OF_DATE_KHR)
{
RecreateSwapchain(vk);
}
else if(result != VK_SUBOPTIMAL_KHR)
{
VkCheckA("BeginFrame failure: vkAcquireNextImageKHR error", result);
}
result = vkResetCommandBuffer(vk.cmds[vk.frame_index], 0);
VkCheckA("BeginFrame failure: vkResetCommandBuffer failure", result);
VkCommandBufferBeginInfo cmd_info = {
sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
flags: VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
result = vkBeginCommandBuffer(vk.cmds[vk.frame_index], &cmd_info);
VkCheckA("BeginFrame failure: vkBeginCommandBuffer error", result);
}
void
SetClearColors(Vulkan* vk, f32[4] color_clear, f32[4] depth_clear)
{
vk.color_clear = color_clear;
vk.depth_clear = depth_clear;
}
void
BeginRendering(Vulkan* vk)
{
Transition(vk.cmds[vk.frame_index], &vk.draw_image, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
Transition(vk.cmds[vk.frame_index], &vk.depth_image, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL);
VkImage image = CurrentImage(vk);
Transition(vk.cmds[vk.frame_index], image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkClearValue[2] clear_color = [
{
color: {
float32: vk.color_clear,
},
},
{
color: {
float32: vk.depth_clear,
},
},
];
VkRenderPassBeginInfo pass_info = {
sType: VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
renderPass: vk.render_pass,
framebuffer: vk.framebuffer,
renderArea: {
offset: {
x: 0,
y: 0,
},
extent: {
width: vk.swapchain_extent.width,
height: vk.swapchain_extent.height,
},
},
clearValueCount: cast(u32)clear_color.length,
pClearValues: clear_color.ptr,
};
vkCmdBeginRenderPass(vk.cmds[vk.frame_index], &pass_info, VK_SUBPASS_CONTENTS_INLINE);
}
pragma(inline): void
ResizeDrawImageIfNeeded(Vulkan* vk, ImageView* view)
{
u32[2] ext = GetExtent(vk);
if(view.w != ext[0] || view.h != ext[1])
{
Destroy(vk, view);
CreateImageView(vk, view, ext[0], ext[1], view.format, view.usage, view.depth_image);
}
}
pragma(inline): u32[2]
GetExtent(Vulkan* vk)
{
u32[2] extent;
extent[0] = vk.swapchain_extent.width;
extent[1] = vk.swapchain_extent.height;
return extent;
}
pragma(inline): f32
GetAspect(Vulkan* vk)
{
return cast(f32)(vk.swapchain_extent.width) / cast(f32)(vk.swapchain_extent.height);
}
void
PrepAuxImage(Vulkan* vk, ImageView* view)
{
Transition(vk.cmds[vk.frame_index], view, VK_IMAGE_LAYOUT_GENERAL);
}
void
PrepComputeDrawImage(Vulkan* vk)
{
Transition(vk.cmds[vk.frame_index], &vk.draw_image, VK_IMAGE_LAYOUT_GENERAL);
}
void
FinishRendering(Vulkan* vk)
{
vkCmdEndRenderPass(vk.cmds[vk.frame_index]);
}
void
SubmitAndPresent(Vulkan* vk)
{
scope(exit)
{
vk.last_pipeline[vk.frame_index] = null;
vk.frame_index = (vk.frame_index + 1) % FRAME_OVERLAP;
}
VkImage image = CurrentImage(vk);
VkSemaphore acquire_sem = vk.acquire_sems[vk.frame_index];
VkSemaphore submit_sem = vk.submit_sems[vk.image_index];
Transition(vk.cmds[vk.frame_index], &vk.draw_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkExtent2D extent = {
width: vk.swapchain_extent.width,
height: vk.swapchain_extent.height,
};
// TODO: Find out how to copy from same dimension images (pretty sure its not blitting)
Copy(vk.cmds[vk.frame_index], &vk.draw_image.base, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, extent, extent);
Transition(vk.cmds[vk.frame_index], image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR);
VkResult result = vkEndCommandBuffer(vk.cmds[vk.frame_index]);
VkCheckA("FinishFrame failure: vkEndCommandBuffer error", result);
VkCommandBufferSubmitInfo cmd_info = {
sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO,
commandBuffer: vk.cmds[vk.frame_index],
};
VkSemaphoreSubmitInfo wait_info = {
sType: VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO,
semaphore: acquire_sem,
stageMask: VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT,
value: 1,
};
VkSemaphoreSubmitInfo signal_info = {
sType: VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO,
semaphore: submit_sem,
stageMask: VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT,
value: 1,
};
VkSubmitInfo2 submit_info = {
sType: VK_STRUCTURE_TYPE_SUBMIT_INFO_2,
waitSemaphoreInfoCount: 1,
pWaitSemaphoreInfos: &wait_info,
signalSemaphoreInfoCount: 1,
pSignalSemaphoreInfos: &signal_info,
commandBufferInfoCount: 1,
pCommandBufferInfos: &cmd_info,
};
result = vkQueueSubmit2(vk.queues.gfx_queue, 1, &submit_info, vk.render_fences[vk.frame_index]);
VkCheckA("FinishFrame failure: vkQueueSubmit2 error", result);
VkPresentInfoKHR present_info = {
sType: VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
swapchainCount: 1,
pSwapchains: &vk.swapchain,
waitSemaphoreCount: 1,
pWaitSemaphores: &submit_sem,
pImageIndices: &vk.image_index,
};
result = vkQueuePresentKHR(vk.queues.gfx_queue, &present_info);
if(result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR)
{
RecreateSwapchain(vk);
}
else
{
VkCheckA("FinishFrame failure: vkQueuePresentKHR failure", result);
}
}
void
Draw(Vulkan* vk, u32 index_count, u32 instance_count)
{
vkCmdDraw(vk.cmds[vk.frame_index], index_count, instance_count, 0, 0);
}
void
DrawIndexed(Vulkan* vk, u32 index_count, u32 instance_count, u32 index_offset)
{
vkCmdDrawIndexed(vk.cmds[vk.frame_index], index_count, instance_count, index_offset, 0, 0);
}
bool
ImmSubmitStart(Vulkan* vk)
{
VkResult result = vkWaitForFences(vk.device, 1, &vk.imm_fence, true, 999999999);
bool success = VkCheck("ImmSubmit failure: vkWaitForFences error", result);
if(success)
{
result = vkResetFences(vk.device, 1, &vk.imm_fence);
success = VkCheck("ImmSubmit failure: vkResetFences error", result);
}
if(success)
{
result = vkResetCommandBuffer(vk.imm_cmd, 0);
success = VkCheck("ImmSubmit failure: vkResetCommandBuffer error", result);
}
if(success)
{
VkCommandBufferBeginInfo cmd_info = {
sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
flags: VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
result = vkBeginCommandBuffer(vk.imm_cmd, &cmd_info);
success = VkCheck("ImmSubmit failure: vkBeginCommandBuffer error", result);
}
return success;
}
bool
ImmSubmitFinish(Vulkan* vk)
{
VkCommandBufferSubmitInfo cmd_info = {
sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO,
commandBuffer: vk.imm_cmd,
};
VkSubmitInfo2 submit_info = {
sType: VK_STRUCTURE_TYPE_SUBMIT_INFO_2,
commandBufferInfoCount: 1,
pCommandBufferInfos: &cmd_info,
};
VkResult result = vkQueueSubmit2(vk.tfer_queue, 1, &submit_info, vk.imm_fence);
return VkCheck("ImmSubmit failure: vkQueueSubmit2 error", result);
}
bool
ImmSubmit(Vulkan* vk, Image* image, VkBufferImageCopy copy, void function(Vulkan*, Image*, VkBufferImageCopy) fn)
{
bool success = ImmSubmitStart(vk);
if(success)
{
fn(vk, image, copy);
VkResult result = vkEndCommandBuffer(vk.imm_cmd);
success = VkCheck("ImmSubmit failure: vkEndCommandBuffer error", result);
}
if(success)
{
success = ImmSubmitFinish(vk);
}
return success;
}
bool
ImmSubmit(Vulkan* vk, Buffer* buf, VkBufferCopy copy, void function(Vulkan*, Buffer*, VkBufferCopy) fn)
{
bool success = ImmSubmitStart(vk);
if(success)
{
fn(vk, buf, copy);
VkResult result = vkEndCommandBuffer(vk.imm_cmd);
success = VkCheck("ImmSubmit failure: vkEndCommandBuffer error", result);
}
if(success)
{
success = ImmSubmitFinish(vk);
}
return success;
}
bool
TransferAssets(Vulkan* vk)
{
return true;
}
void
WaitForTransfers(Vulkan* vk)
{
vkWaitForFences(vk.device, 1, &vk.imm_fence, VK_TRUE, u64.max);
}
void
CreateImageView(Vulkan* vk, Descriptor* view, u32 w, u32 h, u32 ch, u8[] data)
{
view.type = DT.Image;
CreateImageView(vk, &view.view, w, h, ch, data);
}
pragma(inline): void
CreateImageView(Vulkan* vk, ImageView* view, u32 w, u32 h, u32 ch, u8[] data)
{
CreateImageView(vk, view, w, h, FMT.RGBA_UNORM, IU.Texture);
if(ch == 4)
{
bool result = Transfer(vk, view, data, w, h);
assert(result);
}
else
{
Buffer buf;
CreateBuffer(vk, &buf, BT.Storage, w * h * ch, false);
bool result = Transfer(vk, &buf, data);
assert(result, "CreateImageView failure: Buffer Transfer error");
ImageView conv_view;
CreateImageView(vk, &conv_view, w, h, FMT.RGBA_F32, IU.Convert);
WriteConvDescriptor(vk, &buf);
WriteConvDescriptor(vk, &conv_view);
BeginComputePass(vk);
Pipeline pipeline = ch == 1 ? vk.r_to_rgba_pipeline :
ch == 2 ? vk.rg_to_rgba_pipeline :
vk.rgb_to_rgba_pipeline;
Bind(vk, pipeline, vk.conv_desc_set, true);
ConvPushConst pc = {
x: w,
y: h,
};
vkCmdPushConstants(
vk.comp_cmd,
vk.conv_pipeline_layout,
VK_SHADER_STAGE_COMPUTE_BIT,
0,
ConvPushConst.sizeof,
&pc
);
Transition(vk.comp_cmd, &conv_view, VK_IMAGE_LAYOUT_GENERAL);
Dispatch(vk, vk.comp_cmd);
Transition(vk.comp_cmd, view, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkExtent2D extent = { width: w, height: h };
Copy(vk.comp_cmd, &conv_view.base, &view.base, extent, extent);
Transition(vk.comp_cmd, view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
FinishComputePass(vk);
vkWaitForFences(vk.device, 1, &vk.comp_fence, VK_TRUE, u64.max);
vkQueueWaitIdle(vk.tfer_queue);
Destroy(vk, &buf);
Destroy(vk, &conv_view);
}
}
pragma(inline): void
BeginComputePass(Vulkan* vk)
{
VkResult result = vkWaitForFences(vk.device, 1, &vk.comp_fence, VK_TRUE, 1000000000);
VkCheckA("BeginComputePass failure: vkWaitForFences error", result);
result = vkResetFences(vk.device, 1, &vk.comp_fence);
VkCheckA("BeginComputepass failure: vkResetFences error", result);
result = vkResetCommandBuffer(vk.comp_cmd, 0);
VkCheckA("BeginComputePass failure: vkResetCommandBuffer error", result);
VkCommandBufferBeginInfo cmd_info = {
sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
flags: VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
result = vkBeginCommandBuffer(vk.comp_cmd, &cmd_info);
VkCheckA("BeginComputePass failure: vkBeginCommandBuffer error", result);
}
pragma(inline): void
FinishComputePass(Vulkan* vk)
{
VkResult result = vkEndCommandBuffer(vk.comp_cmd);
VkCheckA("FinishComputePass failure: vkEndCommandBuffer error", result);
VkCommandBufferSubmitInfo cmd_info = {
sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO,
commandBuffer: vk.comp_cmd,
};
VkSubmitInfo2 submit_info = {
sType: VK_STRUCTURE_TYPE_SUBMIT_INFO_2,
commandBufferInfoCount: 1,
pCommandBufferInfos: &cmd_info,
};
result = vkQueueSubmit2(vk.gfx_queue, 1, &submit_info, vk.comp_fence);
VkCheckA("FinishComputePass failure: vkQueueSubmit2 error", result);
}
pragma(inline): void
CreateBufferView(Vulkan* vk, BufferView* view, u64 size, Format format)
{
CreateBuffer(vk, &view.base, BT.BufferView, size, false);
VkBufferViewCreateInfo info = {
sType: VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO,
buffer: view.buffer,
format: format,
range: size,
};
VkResult result = vkCreateBufferView(vk.device, &info, null, &view.view);
VkCheckA("CreateBufferView failure: vkCreateBufferView failed", result);
view.size = size;
}
pragma(inline): void
CreateImageView(Vulkan* vk, ImageView* view, u32 w, u32 h, Format format, ImageUsage usage, bool depth_image = false)
{
VmaAllocationCreateInfo alloc_info = {
usage: VMA_MEMORY_USAGE_GPU_ONLY,
requiredFlags: VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
};
VkImageCreateInfo image_info = {
sType: VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
imageType: VK_IMAGE_TYPE_2D,
mipLevels: 1,
arrayLayers: 1,
format: format,
tiling: VK_IMAGE_TILING_OPTIMAL,
initialLayout: VK_IMAGE_LAYOUT_UNDEFINED,
usage: usage,
samples: VK_SAMPLE_COUNT_1_BIT,
extent: {
width: w,
height: h,
depth: 1,
},
};
u32[2] indices = [vk.gfx_index, vk.tfer_index];
if(vk.gfx_index != vk.tfer_index)
{
image_info.sharingMode = VK_SHARING_MODE_CONCURRENT;
image_info.queueFamilyIndexCount = 2;
image_info.pQueueFamilyIndices = indices.ptr;
}
VkResult result = vmaCreateImage(vk.vma, &image_info, &alloc_info, &view.image, &view.alloc, null);
// TODO: handle errors and realloc
VkCheck("CreateImageView failure: vmaCreateImage error", result);
VkImageViewCreateInfo view_info = {
sType: VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
image: view.image,
viewType: VK_IMAGE_VIEW_TYPE_2D,
format: format,
subresourceRange: {
aspectMask: (depth_image ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT),
levelCount: 1,
layerCount: 1,
},
};
result = vkCreateImageView(vk.device, &view_info, null, &view.view);
// TODO: also handle here
VkCheck("CreateImageView failure: vkCreateImageView error", result);
view.layout = VK_IMAGE_LAYOUT_UNDEFINED;
view.format = format;
view.w = w;
view.h = h;
view.depth_image = depth_image;
view.usage = usage;
}
void
PushConstants(T)(Vulkan* vk, Pipeline pipeline_id, T* pc)
{
assert(pipeline_id > 0, "PushConstants pipeline_id == 0");
PipelineHandles* pipeline = vk.pipeline_handles.ptr + pipeline_id;
VkShaderStageFlags stage = (pipeline.type == VK_PIPELINE_BIND_POINT_GRAPHICS ?
VK_SHADER_STAGE_VERTEX_BIT|VK_SHADER_STAGE_FRAGMENT_BIT :
VK_SHADER_STAGE_COMPUTE_BIT);
vkCmdPushConstants(
vk.cmds[vk.frame_index],
pipeline.layout,
stage,
0,
T.sizeof,
pc
);
}
void
ImageBarrier(Vulkan* vk)
{
VkMemoryBarrier2 barrier = {
sType: VK_STRUCTURE_TYPE_MEMORY_BARRIER_2,
srcStageMask: VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
srcAccessMask: VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
dstStageMask: VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
dstAccessMask: VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
};
VkDependencyInfo dependency = {
sType: VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
dependencyFlags: VK_DEPENDENCY_BY_REGION_BIT,
memoryBarrierCount: 1,
pMemoryBarriers: &barrier,
};
vkCmdPipelineBarrier2(vk.cmds[vk.frame_index], &dependency);
}
bool
Transfer(T)(Vulkan* vk, Buffer* buf, T[] data)
{
u8[] u8_data = (cast(u8*)(data.ptr))[0 .. T.sizeof * data.length];
return Transfer(vk, buf, u8_data);
}
bool
Transfer(Vulkan* vk, Buffer* buf, u8[] data)
{
bool success = TransferReady(vk);
u64 copied = 0;
while(copied != data.length && success)
{
if(copied != 0)
{
success = TransferReady(vk);
if(!success)
{
break;
}
}
u64 transfer_length = cast(u64)vk.transfer_buf.data.length;
u64 data_length = cast(u64)data.length - copied;
u64 copy_length = transfer_length > data_length ? data_length : transfer_length;
vk.transfer_buf.data[0 .. copy_length] = data[copied .. copy_length];
auto fn = function(Vulkan* vk, Buffer* buf, VkBufferCopy copy)
{
vkCmdCopyBuffer(vk.imm_cmd, vk.transfer_buf.buffer, buf.buffer, 1, &copy);
};
VkBufferCopy copy = {
srcOffset: 0,
dstOffset: copied,
size: copy_length,
};
success = ImmSubmit(vk, buf, copy, fn);
copied += copy_length;
}
WaitForTransfers(vk);
return success;
}
bool
Transfer(T)(Vulkan* vk, Buffer* buf, T* ptr)
{
assert(T.sizeof < vk.transfer_buf.data.length, "Transfer failure: structure size is too large");
bool success = TransferReady(vk);
if(success)
{
memcpy(vk.transfer_buf.data.ptr, ptr, T.sizeof);
auto fn = function(Vulkan* vk, Buffer* buf, VkBufferCopy copy)
{
vkCmdCopyBuffer(vk.imm_cmd, vk.transfer_buf.buffer, buf.buffer, 1, &copy);
};
VkBufferCopy copy = {
srcOffset: 0,
dstOffset: 0,
size: T.sizeof,
};
success = ImmSubmit(vk, buf, copy, fn);
}
WaitForTransfers(vk);
return success;
}
// Needs to be done before writing to the transfer buffer as otherwise it'll overwrite it while previous transfers are occurring
bool
TransferReady(Vulkan* vk)
{
VkResult result = vkWaitForFences(vk.device, 1, &vk.imm_fence, true, 999999999);
return VkCheck("Transfer failure: vkWaitForFences error", result);
}
pragma(inline): bool
Transfer(Vulkan* vk, ImageView* view, u8[] data, u32 w, u32 h)
{
return Transfer(vk, &view.base, data, w, h);
}
bool
Transfer(Vulkan* vk, Image* image, u8[] data, u32 w, u32 h)
{
bool success = true;
u64 copied = 0;
while(copied != data.length)
{
u64 transfer_length = cast(u64)vk.transfer_buf.data.length;
u64 data_length = cast(u64)data.length - copied;
u64 copy_length = transfer_length > data_length ? data_length : transfer_length;
vk.transfer_buf.data[0 .. copy_length] = data[copied .. copy_length];
auto fn = function(Vulkan* vk, Image* image, VkBufferImageCopy copy)
{
Transition(vk.imm_cmd, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdCopyBufferToImage(vk.imm_cmd, vk.transfer_buf.buffer, image.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy);
Transition(vk.imm_cmd, image, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
};
VkBufferImageCopy copy = {
bufferRowLength: w,
bufferImageHeight: h,
imageSubresource: {
aspectMask: VK_IMAGE_ASPECT_COLOR_BIT,
layerCount: 1,
},
imageExtent: {
width: w,
height: h,
depth: 1,
},
bufferOffset: copied,
};
success = ImmSubmit(vk, image, copy, fn);
copied += copy_length;
}
WaitForTransfers(vk);
return success;
}
pragma(inline): void
Copy(VkCommandBuffer cmd, Image* src, Image* dst, VkExtent2D src_ext, VkExtent2D dst_ext)
{
Copy(cmd, src.image, dst.image, src.layout, dst.layout, src_ext, dst_ext);
}
pragma(inline): void
Copy(VkCommandBuffer cmd, Image* src, VkImage dst, VkImageLayout dst_layout, VkExtent2D src_ext, VkExtent2D dst_ext)
{
Copy(cmd, src.image, dst, src.layout, dst_layout, src_ext, dst_ext);
}
pragma(inline): void
Copy(VkCommandBuffer cmd, VkImage src, VkImage dst, VkImageLayout src_layout, VkImageLayout dst_layout, VkExtent2D src_ext, VkExtent2D dst_ext)
{
VkImageBlit blit = {
srcOffsets: [
{ x: 0, y: 0 },
{ x: cast(i32)src_ext.width, y: cast(i32)src_ext.height, z: 1 },
],
dstOffsets: [
{ x: 0, y: 0 },
{ x: cast(i32)dst_ext.width, y: cast(i32)dst_ext.height, z: 1 },
],
srcSubresource: {
aspectMask: VK_IMAGE_ASPECT_COLOR_BIT,
baseArrayLayer: 0,
layerCount: 1,
mipLevel: 0,
},
dstSubresource: {
aspectMask: VK_IMAGE_ASPECT_COLOR_BIT,
baseArrayLayer: 0,
layerCount: 1,
mipLevel: 0,
},
};
vkCmdBlitImage(
cmd,
src,
src_layout,
dst,
dst_layout,
1,
&blit,
VK_FILTER_LINEAR
);
}
void
Bind(Vulkan* vk, Pipeline pipeline_handle, DescSet[] sets, bool compute = false)
{
assert(pipeline_handle > 0, "Bind failure: pipeline is 0");
VkCommandBuffer cmd = (compute ? vk.comp_cmd : vk.cmds[vk.frame_index]);
PipelineHandles* pipeline = vk.pipeline_handles.ptr + pipeline_handle;
BindPipeline(vk, cmd, pipeline);
u32[] offsets;
if(vk.global_set.dynamic_count > 0)
{
offsets = Alloc!(u32)(&vk.frame_arenas[vk.frame_index], vk.global_set.dynamic_count);
}
vkCmdBindDescriptorSets(
cmd,
pipeline.type,
pipeline.layout,
0,
1,
&vk.global_set.handle,
cast(u32)offsets.length,
offsets.ptr
);
u32 offset_count;
VkDescriptorSet[] handles = Alloc!(VkDescriptorSet)(&vk.frame_arenas[vk.frame_index], sets.length);
foreach(i, set; sets)
{
handles[i] = set.handle;
offset_count += set.dynamic_count;
}
if(offset_count > 0)
{
offsets = Alloc!(u32)(&vk.frame_arenas[vk.frame_index], offset_count);
}
vkCmdBindDescriptorSets(
cmd,
pipeline.type,
pipeline.layout,
1,
cast(u32)handles.length,
handles.ptr,
cast(u32)offsets.length,
offsets.ptr
);
}
PipelineHandles*
NewPipeline(Vulkan* vk)
{
PipelineHandles* pipeline = vk.pipeline_handles.ptr + vk.pipeline_count;
pipeline.index = vk.pipeline_count;
vk.pipeline_count += 1;
return pipeline;
}
void
Bind(Vulkan* vk, Pipeline pipeline_handle, DescSet set, bool compute = false)
{
assert(pipeline_handle > 0, "Bind failure: pipeline is 0");
VkCommandBuffer cmd = (compute ? vk.comp_cmd : vk.cmds[vk.frame_index]);
PipelineHandles* pipeline = vk.pipeline_handles.ptr + pipeline_handle;
BindPipeline(vk, cmd, pipeline);
u32[] offsets;
if(vk.global_set.dynamic_count > 0)
{
offsets = Alloc!(u32)(&vk.frame_arenas[vk.frame_index], vk.global_set.dynamic_count);
}
vkCmdBindDescriptorSets(
cmd,
pipeline.type,
pipeline.layout,
0,
1,
&vk.global_set.handle,
cast(u32)offsets.length,
offsets.ptr
);
if(set.dynamic_count > 0)
{
offsets = Alloc!(u32)(&vk.frame_arenas[vk.frame_index], set.dynamic_count);
}
vkCmdBindDescriptorSets(
cmd,
pipeline.type,
pipeline.layout,
1,
1,
&set.handle,
cast(u32)offsets.length,
offsets.ptr
);
}
pragma(inline): void
BindPipeline(Vulkan* vk, VkCommandBuffer cmd, PipelineHandles* pipeline)
{
vkCmdBindPipeline(cmd, pipeline.type, pipeline.handle);
vk.last_pipeline[vk.frame_index] = pipeline.handle;
VkViewport viewport = {
x: 0.0,
y: 0.0,
width: cast(f32)vk.swapchain_extent.width,
height: cast(f32)vk.swapchain_extent.height,
minDepth: 0.0,
maxDepth: 1.0,
};
vkCmdSetViewport(cmd, 0, 1, &viewport);
VkRect2D scissor = {
extent: {
width: vk.swapchain_extent.width,
height: vk.swapchain_extent.height,
},
};
vkCmdSetScissor(cmd, 0, 1, &scissor);
}
pragma(inline): void
Transition(VkCommandBuffer cmd, VkImage image, VkImageLayout current_layout, VkImageLayout new_layout)
{
VkImageMemoryBarrier2 barrier = {
sType: VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
srcStageMask: VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
srcAccessMask: VK_ACCESS_2_MEMORY_WRITE_BIT,
dstStageMask: VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
dstAccessMask: VK_ACCESS_2_MEMORY_WRITE_BIT | VK_ACCESS_2_MEMORY_READ_BIT,
oldLayout: current_layout,
newLayout: new_layout,
image: image,
subresourceRange: {
aspectMask: new_layout == VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT,
baseMipLevel: 0,
levelCount: VK_REMAINING_MIP_LEVELS,
baseArrayLayer: 0,
layerCount: VK_REMAINING_ARRAY_LAYERS,
},
};
VkDependencyInfo dep_info = {
sType: VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
imageMemoryBarrierCount: 1,
pImageMemoryBarriers: &barrier,
};
vkCmdPipelineBarrier2(cmd, &dep_info);
}
pragma(inline): void
Transition(VkCommandBuffer cmd, ImageView* view, VkImageLayout new_layout)
{
Transition(cmd, view.image, view.layout, new_layout);
view.layout = new_layout;
}
pragma(inline): void
Transition(VkCommandBuffer cmd, Image* image, VkImageLayout new_layout)
{
Transition(cmd, image.image, image.layout, new_layout);
image.layout = new_layout;
}
bool
BuildShader(Vulkan* vk, Shader* shader, u8[] bytes)
{
VkShaderModuleCreateInfo shader_info = {
sType: VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
codeSize: bytes.length,
pCode: cast(uint*)bytes.ptr,
};
VkResult result = vkCreateShaderModule(vk.device, &shader_info, null, shader);
return VkCheck("vkCreateShaderModule failure", result);
}
void
InitFramebufferAndRenderPass(Vulkan* vk)
{
VkAttachmentDescription[2] attach_descriptions = [
{
format: vk.draw_image.format,
samples: VK_SAMPLE_COUNT_1_BIT,
loadOp: VK_ATTACHMENT_LOAD_OP_CLEAR,
storeOp: VK_ATTACHMENT_STORE_OP_STORE,
stencilLoadOp: VK_ATTACHMENT_LOAD_OP_DONT_CARE,
stencilStoreOp: VK_ATTACHMENT_STORE_OP_DONT_CARE,
initialLayout: VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
finalLayout: VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
},
{
format: vk.depth_image.format,
samples: VK_SAMPLE_COUNT_1_BIT,
loadOp: VK_ATTACHMENT_LOAD_OP_CLEAR,
storeOp: VK_ATTACHMENT_STORE_OP_STORE,
initialLayout: VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
finalLayout: VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
},
];
VkAttachmentReference color_ref = {
attachment: 0,
layout: VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
};
VkAttachmentReference depth_ref = {
attachment: 1,
layout: VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
};
VkSubpassDescription subpass = {
pipelineBindPoint: VK_PIPELINE_BIND_POINT_GRAPHICS,
colorAttachmentCount: 1,
pColorAttachments: &color_ref,
pDepthStencilAttachment: &depth_ref,
};
VkSubpassDependency self_dependency = {
srcSubpass: 0,
dstSubpass: 0,
srcStageMask: VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
dstStageMask: VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
srcAccessMask: VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
dstAccessMask: VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
dependencyFlags: VK_DEPENDENCY_BY_REGION_BIT,
};
VkRenderPassCreateInfo pass_info = {
sType: VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
attachmentCount: cast(u32)attach_descriptions.length,
pAttachments: attach_descriptions.ptr,
subpassCount: 1,
pSubpasses: &subpass,
dependencyCount: 1,
pDependencies: &self_dependency,
};
VkResult result = vkCreateRenderPass(vk.device, &pass_info, null, &vk.render_pass);
VkCheckA("vkCreateRenderPass failure", result);
CreateFramebuffer(vk);
}
void
CreateFramebuffer(Vulkan* vk)
{
VkFramebufferCreateInfo framebuffer_info = {
sType: VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
renderPass: vk.render_pass,
attachmentCount: 2,
pAttachments: [vk.draw_image.view, vk.depth_image.view],
width: vk.swapchain_extent.width,
height: vk.swapchain_extent.height,
layers: 1,
};
VkResult result = vkCreateFramebuffer(vk.device, &framebuffer_info, null, &vk.framebuffer);
VkCheckA("vkCreateFramebuffer failure", result);
}
bool
CreateGraphicsPipeline(Vulkan* vk, Pipeline* pipeline_handle, GfxPipelineInfo* build_info)
{
PipelineHandles* pipeline = NewPipeline(vk);
pipeline.type = VK_PIPELINE_BIND_POINT_GRAPHICS;
pipeline.layout = build_info.layout;
VkDynamicState[2] dyn_state = [ VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR ];
VkPipelineDynamicStateCreateInfo dyn_info = {
sType: VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
pDynamicStates: dyn_state.ptr,
dynamicStateCount: cast(u32)dyn_state.length,
};
VkPipelineInputAssemblyStateCreateInfo assembly_info = {
sType: VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
topology: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
primitiveRestartEnable: VK_FALSE,
};
VkPipelineRasterizationStateCreateInfo rasterization_info = {
sType: VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
cullMode: VK_CULL_MODE_BACK_BIT,
polygonMode: VK_POLYGON_MODE_FILL,
lineWidth: 1.0,
frontFace: cast(VkFrontFace)build_info.front_face,
};
VkPipelineMultisampleStateCreateInfo multisample_info = {
sType: VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
rasterizationSamples: VK_SAMPLE_COUNT_1_BIT,
minSampleShading: 1.0,
alphaToCoverageEnable: VK_FALSE,
alphaToOneEnable: VK_FALSE,
};
VkPipelineDepthStencilStateCreateInfo depth_info = {
sType: VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
depthTestEnable: VK_TRUE,
depthWriteEnable: VK_TRUE,
depthCompareOp: VK_COMPARE_OP_GREATER_OR_EQUAL,
depthBoundsTestEnable: VK_FALSE,
stencilTestEnable: VK_FALSE,
minDepthBounds: 0.0,
maxDepthBounds: 1.0,
};
VkPipelineRenderingCreateInfo rendering_info = {
sType: VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO,
colorAttachmentCount: 1,
pColorAttachmentFormats: cast(VkFormat*)&vk.draw_image.format,
depthAttachmentFormat: vk.depth_image.format,
};
VkPipelineColorBlendAttachmentState blend_state = {
colorWriteMask: VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT,
blendEnable: VK_TRUE,
srcColorBlendFactor: build_info.src_color,
dstColorBlendFactor: build_info.dst_color,
colorBlendOp: build_info.color_op,
srcAlphaBlendFactor: build_info.src_alpha,
dstAlphaBlendFactor: build_info.dst_alpha,
alphaBlendOp: build_info.alpha_op,
};
VkPipelineColorBlendStateCreateInfo blend_info = {
sType: VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
logicOpEnable: VK_FALSE,
logicOp: VK_LOGIC_OP_COPY,
attachmentCount: 1,
pAttachments: &blend_state,
};
VkVertexInputBindingDescription vertex_input_desc = {
binding: 0,
inputRate: cast(VkVertexInputRate)build_info.input_rate,
stride: build_info.input_rate_stride,
};
VkPipelineVertexInputStateCreateInfo input_info = {
sType: VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
vertexBindingDescriptionCount: 1,
pVertexBindingDescriptions: &vertex_input_desc,
vertexAttributeDescriptionCount: cast(u32)build_info.vertex_attributes.length,
pVertexAttributeDescriptions: build_info.vertex_attributes.ptr,
};
VkPipelineViewportStateCreateInfo viewport_info = {
sType: VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
viewportCount: 1,
scissorCount: 1,
};
VkPipelineShaderStageCreateInfo[2] shader_info = [
{
sType: VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
stage: VK_SHADER_STAGE_FRAGMENT_BIT,
pName: "main",
},
{
sType: VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
stage: VK_SHADER_STAGE_VERTEX_BIT,
pName: "main",
},
];
Arena* arena = &vk.frame_arenas[0];
bool success = true;
Shader frag_module, vert_module;
success &= BuildShader(vk, &frag_module, build_info.frag_shader);
success &= BuildShader(vk, &vert_module, build_info.vertex_shader);
scope(exit)
{
Destroy(vk, frag_module);
Destroy(vk, vert_module);
}
if(success)
{
__traits(getMember, shader_info.ptr + 0, "module") = frag_module;
__traits(getMember, shader_info.ptr + 1, "module") = vert_module;
VkSpecializationInfo vert_spec_info = {
dataSize: build_info.vert_spec.size,
mapEntryCount: cast(u32)build_info.vert_spec.entries.length,
pMapEntries: build_info.vert_spec.entries.ptr,
pData: build_info.vert_spec.data,
};
if(build_info.vert_spec.entries.length > 0)
{
shader_info[0].pSpecializationInfo = &vert_spec_info;
}
VkSpecializationInfo frag_spec_info = {
dataSize: build_info.frag_spec.size,
mapEntryCount: cast(u32)build_info.frag_spec.entries.length,
pMapEntries: build_info.frag_spec.entries.ptr,
pData: build_info.frag_spec.data,
};
if(build_info.frag_spec.entries.length > 0)
{
shader_info[1].pSpecializationInfo = &frag_spec_info;
}
VkGraphicsPipelineCreateInfo create_info = {
sType: VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
pNext: &rendering_info,
pVertexInputState: &input_info,
pInputAssemblyState: &assembly_info,
pViewportState: &viewport_info,
pRasterizationState: &rasterization_info,
pMultisampleState: &multisample_info,
pColorBlendState: &blend_info,
pDepthStencilState: &depth_info,
pDynamicState: &dyn_info,
stageCount: cast(u32)shader_info.length,
pStages: shader_info.ptr,
renderPass: vk.render_pass,
layout: build_info.layout,
};
VkResult result = vkCreateGraphicsPipelines(vk.device, null, 1, &create_info, null, &pipeline.handle);
success = VkCheck("CreateGraphicsPipeline failure", result);
*pipeline_handle = pipeline.index;
}
return success;
}
Pipeline
CreateComputePipeline(Vulkan* vk, CompPipelineInfo* comp_info)
{
VkComputePipelineCreateInfo info = {
sType: VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
layout: comp_info.layout,
stage: {
sType: VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
stage: VK_SHADER_STAGE_COMPUTE_BIT,
pName: "main",
},
};
Shader comp_module;
BuildShader(vk, &comp_module, comp_info.shader);
scope(exit) Destroy(vk, comp_module);
__traits(getMember, &info.stage, "module") = comp_module;
VkSpecializationInfo spec_info = {
dataSize: comp_info.spec.size,
mapEntryCount: cast(u32)comp_info.spec.entries.length,
pMapEntries: comp_info.spec.entries.ptr,
pData: comp_info.spec.data,
};
if(comp_info.spec.entries.length > 0)
{
info.stage.pSpecializationInfo = &spec_info;
}
PipelineHandles* pipeline = NewPipeline(vk);
pipeline.type = VK_PIPELINE_BIND_POINT_COMPUTE;
pipeline.layout = comp_info.layout;
Pipeline pipeline_handle = pipeline.index;
VkResult result = vkCreateComputePipelines(vk.device, null, 1, &info, null, &pipeline.handle);
VkCheck("CreateComputePipeline failure", result);
return pipeline_handle;
}
void
ClearDepth(Vulkan* vk, f32[4] color = [0.0, 0.0, 0.0, 0.0])
{
Transition(vk.cmds[vk.frame_index], &vk.depth_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
ClearColor(vk, &vk.depth_image, color);
}
void
ClearColor(Vulkan* vk, f32[4] color)
{
Transition(vk.cmds[vk.frame_index], &vk.draw_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
ClearColor(vk, &vk.draw_image, color);
}
void
ClearColor(Vulkan* vk, ImageView* view, f32[4] color)
{
VkImageSubresourceRange clear_range = {
aspectMask: (view.depth_image ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT),
levelCount: 1,
layerCount: 1,
};
vkCmdClearColorImage(
vk.cmds[vk.frame_index],
view.image,
view.layout,
cast(VkClearColorValue*)color,
1,
&clear_range
);
}
void
WaitIdle(Vulkan* vk)
{
vkDeviceWaitIdle(vk.device);
}
void
Destroy(Vulkan* vk, Shader shader)
{
vkDestroyShaderModule(vk.device, shader, null);
}
void
Destroy(Vulkan* vk, Pipeline pipeline)
{
vkDestroyPipeline(vk.device, vk.pipeline_handles[pipeline].handle, null);
}
void
Destroy(Vulkan* vk)
{
vkDeviceWaitIdle(vk.device);
alias N = Node!(SI);
assert(vk.cleanup_list.first != null, "node null");
for(N* node = vk.cleanup_list.first; node != null; node = node.next)
{
switch (node.value)
{
case SI.Renderer:
DestroyRenderer(vk);
break;
case SI.Instance:
Destroy(vk.instance);
break;
case SI.Debug:
Destroy(vk.dbg_msg, vk.instance);
break;
case SI.Surface:
Destroy(vk.surface, vk.instance);
break;
case SI.Device:
Destroy(vk.device);
break;
case SI.Vma:
Destroy(vk.vma);
break;
case SI.FrameStructures:
DestroyFS(vk);
break;
case SI.Swapchain:
Destroy(vk.swapchain, vk.present_images, vk.device);
break;
case SI.DrawImages:
Destroy(vk, &vk.draw_image);
Destroy(vk, &vk.depth_image);
break;
case SI.DescriptorPools:
DestroyDescriptorPools(vk);
break;
case SI.Buffers:
Destroy(vk, &vk.transfer_buf);
break;
case SI.Pipelines:
DestroyPipelines(vk);
break;
default:
break;
}
}
}
void
DestroyDescriptorPools(Vulkan* vk)
{
vkDestroyDescriptorPool(vk.device, vk.active_pool, null);
Node!(VkDescriptorPool)* node = vk.full_pools.first;
for(;;)
{
if(node == null)
{
break;
}
vkDestroyDescriptorPool(vk.device, node.value, null);
node = node.next;
}
}
void
DestroyPipelines(Vulkan* vk)
{
if(vk.conv_pipeline_layout)
{
vkDestroyPipelineLayout(vk.device, vk.conv_pipeline_layout, null);
}
if(vk.conv_desc_layout)
{
vkDestroyDescriptorSetLayout(vk.device, vk.conv_desc_layout, null);
}
if(vk.r_to_rgba_pipeline)
{
vkDestroyPipeline(vk.device, vk.pipeline_handles[vk.r_to_rgba_pipeline].handle, null);
}
if(vk.rg_to_rgba_pipeline)
{
vkDestroyPipeline(vk.device, vk.pipeline_handles[vk.rg_to_rgba_pipeline].handle, null);
}
if(vk.rgb_to_rgba_pipeline)
{
vkDestroyPipeline(vk.device, vk.pipeline_handles[vk.rgb_to_rgba_pipeline].handle, null);
}
}
void
Destroy(T)(Vulkan* vk, MappedBuffer!(T)* buf)
{
vmaUnmapMemory(vk.vma, buf.alloc);
Destroy(vk, &buf.base);
}
void
Destroy(Vulkan* vk, Buffer* buf)
{
vmaDestroyBuffer(vk.vma, buf.buffer, buf.alloc);
}
void
InitDescriptors(Vulkan* vk)
{
Push(vk, SI.DescriptorPools);
PushDescriptorPool(vk);
}
void
PushDescriptorPool(Vulkan* vk)
{
VkDescriptorPoolSize[8] pool_sizes = [
{ type: VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, descriptorCount: 4096 },
{ type: VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, descriptorCount: 4096 },
{ type: VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, descriptorCount: 4096 },
{ type: VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, descriptorCount: 4096 },
{ type: VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, descriptorCount: 4096 },
{ type: VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, descriptorCount: 4096 },
{ type: VK_DESCRIPTOR_TYPE_SAMPLER, descriptorCount: 4096 },
{ type: VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, descriptorCount: 4096 },
];
VkDescriptorPoolCreateInfo pool_info = {
sType: VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
poolSizeCount: cast(u32)pool_sizes.length,
pPoolSizes: pool_sizes.ptr,
maxSets: MAX_SETS,
};
VkDescriptorPool pool;
VkResult result = vkCreateDescriptorPool(vk.device, &pool_info, null, &pool);
bool success = VkCheck("vkCreateDescriptorPool failure", result);
assert(success, "vkCreateDescriptorPool error");
if(vk.active_pool == null || vk.active_pool == VK_NULL_HANDLE)
{
Node!(VkDescriptorPool)* node = Alloc!(Node!(VkDescriptorPool));
node.value = vk.active_pool;
PushFront(&vk.full_pools, node, null);
}
vk.active_pool = pool;
}
bool
InitGlobalDescSet(Vulkan* vk)
{
VkPhysicalDeviceProperties props;
vkGetPhysicalDeviceProperties(vk.physical_device, &props);
VkSamplerCreateInfo sampler_info = {
sType: VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
magFilter: VK_FILTER_NEAREST,
minFilter: VK_FILTER_NEAREST,
addressModeU: VK_SAMPLER_ADDRESS_MODE_REPEAT,
addressModeV: VK_SAMPLER_ADDRESS_MODE_REPEAT,
addressModeW: VK_SAMPLER_ADDRESS_MODE_REPEAT,
anisotropyEnable: VK_TRUE,
maxAnisotropy: props.limits.maxSamplerAnisotropy,
borderColor: VK_BORDER_COLOR_INT_OPAQUE_BLACK,
compareOp: VK_COMPARE_OP_ALWAYS,
mipmapMode: VK_SAMPLER_MIPMAP_MODE_LINEAR,
};
VkResult result = vkCreateSampler(vk.device, &sampler_info, null, &vk.nearest_sampler);
bool success = VkCheck("vkCreateSampler failure", result);
if(success)
{
DescLayoutBinding[2] layout_bindings = [
{ binding: 0, descriptorType: VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, descriptorCount: 1, stageFlags: VK_SHADER_STAGE_ALL },
{ binding: 1, descriptorType: VK_DESCRIPTOR_TYPE_SAMPLER, descriptorCount: 1, stageFlags: VK_SHADER_STAGE_ALL },
];
vk.global_set_layout = CreateDescSetLayout(vk, layout_bindings);
vk.global_set = AllocDescSet(vk, vk.global_set_layout);
WriteDrawImageDesc(vk);
VkDescriptorImageInfo sampler_desc_info = {
sampler: vk.nearest_sampler,
};
VkWriteDescriptorSet write = {
sType: VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
dstSet: vk.global_set.handle,
dstBinding: 1,
descriptorCount: 1,
descriptorType: VK_DESCRIPTOR_TYPE_SAMPLER,
pImageInfo: &sampler_desc_info,
};
vkUpdateDescriptorSets(vk.device, 1, &write, 0, null);
}
return success;
}
void
Write(Vulkan* vk, DescSet set, Descriptor[] descs)
{
Arena* arena = vk.frame_arenas.ptr + vk.frame_index;
VkWriteDescriptorSet[] writes = Alloc!(VkWriteDescriptorSet)(arena, descs.length);
for(u64 i = 0; i < descs.length; i += 1)
{
VkWriteDescriptorSet* write = writes.ptr + i;
write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
write.descriptorType = descs[i].type;
write.dstSet = set.handle;
write.dstBinding = descs[i].binding;
write.descriptorCount = 1;
switch(descs[i].type) with(DescType)
{
case Image, StorageImage, InputAttach:
{
VkDescriptorImageInfo* info = Alloc!(VkDescriptorImageInfo)(arena);
info.imageView = descs[i].view.view;
info.imageLayout = descs[i].view.layout;
write.pImageInfo = info;
} break;
case Uniform, Storage:
{
VkDescriptorBufferInfo* info = Alloc!(VkDescriptorBufferInfo)(arena);
info.buffer = descs[i].buf.buffer;
info.offset = cast(VkDeviceSize)0;
info.range = cast(VkDeviceSize)descs[i].buf.size;
write.pBufferInfo = info;
} break;
case UniformTexelBuf, StorageTexelBuf:
{
write.pTexelBufferView = &descs[i].buf_view.view;
} break;
default: assert(false, "Unsupported descriptor type");
}
}
vkUpdateDescriptorSets(vk.device, cast(u32)writes.length, writes.ptr, 0, null);
}
void
WriteDrawImageDesc(Vulkan* vk)
{
VkDescriptorImageInfo draw_image_info = {
imageView: vk.draw_image.view,
imageLayout: VK_IMAGE_LAYOUT_GENERAL,
};
VkWriteDescriptorSet write = {
sType: VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
dstSet: vk.global_set.handle,
dstBinding: 0,
descriptorCount: 1,
descriptorType: VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
pImageInfo: &draw_image_info,
};
vkUpdateDescriptorSets(vk.device, 1, &write, 0, null);
}
void
WriteConvDescriptor(Vulkan* vk, Buffer* buf)
{
VkDescriptorBufferInfo buf_info = {
buffer: buf.buffer,
range: buf.size,
offset: 0,
};
VkWriteDescriptorSet write = {
sType: VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
dstSet: vk.conv_desc_set.handle,
dstBinding: 1,
descriptorCount: 1,
descriptorType: VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
pBufferInfo: &buf_info,
};
vkUpdateDescriptorSets(vk.device, 1, &write, 0, null);
}
void
WriteConvDescriptor(Vulkan* vk, ImageView* view)
{
VkDescriptorImageInfo image_info = {
imageView: view.view,
imageLayout: VK_IMAGE_LAYOUT_GENERAL,
};
VkWriteDescriptorSet write = {
sType: VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
dstSet: vk.conv_desc_set.handle,
dstBinding: 0,
descriptorCount: 1,
descriptorType: VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
pImageInfo: &image_info,
};
vkUpdateDescriptorSets(vk.device, 1, &write, 0, null);
}
pragma(inline): void
Dispatch(Vulkan* vk, VkCommandBuffer cmd)
{
f32 w = Ceil(cast(f32)(vk.swapchain_extent.width) / 16.0F);
f32 h = Ceil(cast(f32)(vk.swapchain_extent.height) / 16.0F);
vkCmdDispatch(cmd, cast(u32)w, cast(u32)h, 1);
}
pragma(inline): void
Dispatch(Vulkan* vk)
{
Dispatch(vk, vk.cmds[vk.frame_index]);
}
bool
VkCheck(string message, VkResult result)
{
bool success = true;
// TODO: Handle error cases that can be handled
if(result == VK_ERROR_OUT_OF_DEVICE_MEMORY)
{
assert(false, "Handle VK_ERROR_OUT_OF_DEVICE_MEMORY");
}
else if(result == VK_ERROR_OUT_OF_HOST_MEMORY)
{
assert(false, "Handle VK_ERROR_OUT_OF_HOST_MEMORY");
}
else if(result != VK_SUCCESS)
{
success = false;
char[512] buf;
buf[] = '\0';
buf.sformat("%s: %s", message, VkResultStr(result));
Logf("%r", buf);
}
return success;
}
void
VkCheckA(string message, VkResult result)
{
assert(VkCheck(message, result), "Aborting program due to failure");
}
bool
InitFrameStructures(Vulkan* vk)
{
Push(vk, SI.FrameStructures);
bool success = true;
Arena* arena = &vk.frame_arenas[0];
VkSemaphoreCreateInfo sem_info = { sType: VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO };
VkCommandPoolCreateInfo pool_info = {
sType: VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
flags: VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
};
VkFenceCreateInfo fence_info = {
sType: VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
flags: VK_FENCE_CREATE_SIGNALED_BIT,
};
VkCommandBufferAllocateInfo cmd_info = {
sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
commandBufferCount: 1,
level: VK_COMMAND_BUFFER_LEVEL_PRIMARY,
};
u32 sem_count = cast(u32)vk.present_images.length;
vk.submit_sems = Alloc!(VkSemaphore)(arena, sem_count);
foreach(i; 0 .. sem_count)
{
if(success)
{
VkResult result = vkCreateSemaphore(vk.device, &sem_info, null, vk.submit_sems.ptr + i);
success = VkCheck("vkCreateSemaphore failure", result);
}
}
foreach(i; 0 .. FRAME_OVERLAP)
{
VkResult result;
if(success)
{
pool_info.queueFamilyIndex = vk.gfx_index;
result = vkCreateCommandPool(vk.device, &pool_info, null, vk.cmd_pools.ptr + i);
success = VkCheck("vkCreateCommandPool failure", result);
}
if(success)
{
cmd_info.commandPool = vk.cmd_pools[i];
result = vkAllocateCommandBuffers(vk.device, &cmd_info, vk.cmds.ptr + i);
success = VkCheck("vkAllocateCommandBuffers failure", result);
}
if(success)
{
result = vkCreateFence(vk.device, &fence_info, null, vk.render_fences.ptr + i);
success = VkCheck("vkCreateFence failure", result);
}
if(success)
{
result = vkCreateSemaphore(vk.device, &sem_info, null, vk.acquire_sems.ptr + i);
success = VkCheck("vkCreateSemaphore failure", result);
}
}
if(success)
{
pool_info.queueFamilyIndex = vk.tfer_index;
VkResult result = vkCreateCommandPool(vk.device, &pool_info, null, &vk.imm_pool);
success = VkCheck("vkCreateCommandPool failure", result);
}
if(success)
{
cmd_info.commandPool = vk.imm_pool;
VkResult result = vkAllocateCommandBuffers(vk.device, &cmd_info, &vk.imm_cmd);
success = VkCheck("vkAllocateCommandBuffers failure", result);
}
if(success)
{
VkResult result = vkCreateFence(vk.device, &fence_info, null, &vk.imm_fence);
success = VkCheck("vkCreateFence failure", result);
}
if(success)
{
pool_info.queueFamilyIndex = vk.gfx_index;
VkResult result = vkCreateCommandPool(vk.device, &pool_info, null, &vk.comp_cmd_pool);
success = VkCheck("vkCreateCommandPool failure", result);
}
if(success)
{
cmd_info.commandPool = vk.comp_cmd_pool;
VkResult result = vkAllocateCommandBuffers(vk.device, &cmd_info, &vk.comp_cmd);
success = VkCheck("vkCreateCommandPool failure", result);
}
if(success)
{
VkResult result = vkCreateFence(vk.device, &fence_info, null, &vk.comp_fence);
success = VkCheck("vkCreateFence failure", result);
}
return success;
}
Format
GetDrawImageFormat(Vulkan* vk)
{
VkFormat selected_format;
foreach(format; VK_IMAGE_FORMATS)
{
VkImageFormatProperties props;
VkResult result = vkGetPhysicalDeviceImageFormatProperties(
vk.physical_device,
format,
VK_IMAGE_TYPE_2D,
VK_IMAGE_TILING_OPTIMAL,
IU.Draw,
0,
&props
);
if(result == VK_ERROR_FORMAT_NOT_SUPPORTED)
{
continue;
}
if(result == VK_SUCCESS)
{
selected_format = format;
break;
}
}
return cast(Format)selected_format;
}
bool
CreateDrawImages(Vulkan* vk)
{
Push(vk, SI.DrawImages);
bool success = true;
Format draw_format = cast(Format)GetDrawImageFormat(vk);
Format depth_format = cast(Format)VK_FORMAT_D32_SFLOAT;
u32 w = vk.swapchain_extent.width;
u32 h = vk.swapchain_extent.height;
CreateImageView(vk, &vk.draw_image, w, h, draw_format, IU.Draw, false);
CreateImageView(vk, &vk.depth_image, w, h, depth_format, IU.Depth, true);
return success;
}
void
SelectSwapchainFormats(Vulkan* vk)
{
Arena* arena = &vk.frame_arenas[0];
u32 format_count;
vkGetPhysicalDeviceSurfaceFormatsKHR(vk.physical_device, vk.surface, &format_count, null);
VkSurfaceFormatKHR[] formats = Alloc!(VkSurfaceFormatKHR)(arena, format_count);
vkGetPhysicalDeviceSurfaceFormatsKHR(vk.physical_device, vk.surface, &format_count, formats.ptr);
u32 mode_count;
vkGetPhysicalDeviceSurfacePresentModesKHR(vk.physical_device, vk.surface, &mode_count, null);
VkPresentModeKHR[] modes = Alloc!(VkPresentModeKHR)(arena, mode_count);
vkGetPhysicalDeviceSurfacePresentModesKHR(vk.physical_device, vk.surface, &mode_count, modes.ptr);
VkPresentModeKHR present_mode = VK_PRESENT_MODE_FIFO_KHR;
foreach(mode; modes)
{
if(mode == VK_PRESENT_MODE_MAILBOX_KHR)
{
present_mode = VK_PRESENT_MODE_MAILBOX_KHR;
break;
}
}
VkSurfaceFormatKHR surface_format = formats[0];
foreach(format; formats)
{
if(format.format == VK_FORMAT_B8G8R8A8_UNORM)
{
surface_format = format;
break;
}
}
vk.surface_format = surface_format;
vk.present_mode = present_mode;
}
bool
CreateSwapchain(Vulkan* vk)
{
Push(vk, SI.Swapchain);
bool success = true;
Arena* arena = &vk.frame_arenas[0];
VkSurfaceCapabilitiesKHR cap;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(vk.physical_device, vk.surface, &cap);
static bool initialized = false;
if(!initialized)
{
SelectSwapchainFormats(vk);
}
VkSwapchainCreateInfoKHR info = {
sType: VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
imageArrayLayers: 1,
imageUsage: IU.Swapchain,
compositeAlpha: VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
clipped: VK_TRUE,
imageSharingMode: VK_SHARING_MODE_EXCLUSIVE,
minImageCount: cap.minImageCount + 1,
surface: vk.surface,
imageFormat: vk.surface_format.format,
imageColorSpace: vk.surface_format.colorSpace,
imageExtent: {
width: clamp(cast(u32)vk.window_w, cap.minImageExtent.width, cap.maxImageExtent.width),
height: clamp(cast(u32)vk.window_h, cap.minImageExtent.height, cap.maxImageExtent.height),
},
preTransform: cap.currentTransform,
presentMode: vk.present_mode,
};
VkResult result = vkCreateSwapchainKHR(vk.device, &info, null, &vk.swapchain);
success = VkCheck("vkCreateSwapchainKHR failure", result);
u32 count;
vkGetSwapchainImagesKHR(vk.device, vk.swapchain, &count, null);
VkImage[] images = Alloc!(VkImage)(arena, count);
vkGetSwapchainImagesKHR(vk.device, vk.swapchain, &count, images.ptr);
VkImageView[] views = Alloc!(VkImageView)(arena, count);
vk.present_images = Alloc!(ImageView)(&vk.arena, count);
VkImageViewCreateInfo view_info = {
sType: VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
viewType: VK_IMAGE_VIEW_TYPE_2D,
components: {
r: VK_COMPONENT_SWIZZLE_IDENTITY,
g: VK_COMPONENT_SWIZZLE_IDENTITY,
b: VK_COMPONENT_SWIZZLE_IDENTITY,
a: VK_COMPONENT_SWIZZLE_IDENTITY,
},
subresourceRange: {
aspectMask: VK_IMAGE_ASPECT_COLOR_BIT,
baseMipLevel: 0,
levelCount: 1,
baseArrayLayer: 0,
layerCount: 1,
},
};
VkFramebufferCreateInfo framebuffer_info = {
sType: VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
};
foreach(i, image; vk.present_images)
{
vk.present_images[i].image = images[i];
vk.present_images[i].format = cast(Format)vk.surface_format.format;
view_info.image = images[i];
view_info.format = vk.surface_format.format;
result = vkCreateImageView(vk.device, &view_info, null, &vk.present_images[i].view);
success = VkCheck("vkCreateImageView failure", result);
}
vk.swapchain_extent.width = info.imageExtent.width;
vk.swapchain_extent.height = info.imageExtent.height;
vk.swapchain_extent.depth = 1;
if(!initialized && success)
{
initialized = true;
}
return success;
}
void
CheckAndRecreateSwapchain(Vulkan* vk)
{
VkResult result = vkGetSwapchainStatusKHR(vk.device, vk.swapchain);
if(result == VK_ERROR_OUT_OF_DATE_KHR)
{
RecreateSwapchain(vk);
}
else if(result != VK_SUBOPTIMAL_KHR)
{
VkCheckA("BeginFrame failure: vkAcquireNextImageKHR error", result);
}
}
void
RecreateSwapchain(Vulkan* vk)
{
vkDeviceWaitIdle(vk.device);
Destroy(vk.swapchain, vk.present_images, vk.device);
Destroy(vk, &vk.draw_image);
Destroy(vk, &vk.depth_image);
vkDestroyFramebuffer(vk.device, vk.framebuffer, null);
CreateSwapchain(vk);
CreateDrawImages(vk);
WriteDrawImageDesc(vk);
CreateFramebuffer(vk);
}
bool
InitVMA(Vulkan* vk)
{
Push(vk, SI.Vma);
bool success = true;
VmaVulkanFunctions vk_functions = {
vkGetInstanceProcAddr: vkGetInstanceProcAddr,
vkGetDeviceProcAddr: vkGetDeviceProcAddr,
};
VmaAllocatorCreateInfo info = {
flags: VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT,
vulkanApiVersion: VK_MAKE_API_VERSION(0, 1, 2, 0),
pVulkanFunctions: &vk_functions,
physicalDevice: vk.physical_device,
device: vk.device,
instance: vk.instance,
};
VkResult result = vmaCreateAllocator(&info, &vk.vma);
success = VkCheck("vmaCreateAllocator failure", result);
return success;
}
bool
InitDevice(Vulkan* vk)
{
Push(vk, SI.Device);
bool success = false;
Arena* arena = &vk.frame_arenas[0];
u32 count;
vkEnumeratePhysicalDevices(vk.instance, &count, null);
VkPhysicalDevice[] devices = Alloc!(VkPhysicalDevice)(arena, count);
vkEnumeratePhysicalDevices(vk.instance, &count, devices.ptr);
VkPhysicalDevice physical_device = null;
bool discrete_candidate = false;
QueueInfo candidate = {
gfx_index: -1,
tfer_index: -1,
single_queue: false,
};
foreach(dev; devices)
{
QueueInfo current = CheckQueueProperties(arena, dev, vk.surface);
b32 discrete = false;
if(current.gfx_index < 0)
continue;
if(!CheckDeviceProperties(arena, dev, vk.surface, &discrete))
continue;
if(discrete_candidate && !discrete)
continue;
if(!CheckDeviceFeatures(dev))
continue;
discrete_candidate = cast(bool)discrete;
candidate = current;
physical_device = dev;
if(discrete_candidate && !candidate.single_queue)
continue;
}
if(physical_device)
{
VkDeviceQueueCreateInfo[2] queue_info;
f32 priority = 1.0f;
count = 1;
queue_info[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queue_info[0].queueFamilyIndex = candidate.gfx_index;
queue_info[0].queueCount = 1;
queue_info[0].pQueuePriorities = &priority;
queue_info[0].flags = 0;
if(!candidate.single_queue)
{
queue_info[1].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queue_info[1].queueFamilyIndex = candidate.tfer_index;
queue_info[1].queueCount = 1;
queue_info[1].pQueuePriorities = &priority;
queue_info[1].flags = 0;
count += 1;
}
VkPhysicalDeviceSynchronization2Features synchronization2 = {
sType: VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SYNCHRONIZATION_2_FEATURES,
synchronization2: VK_TRUE,
};
VkPhysicalDeviceVulkan12Features features_12 = {
sType: VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
pNext: &synchronization2,
descriptorIndexing: VK_TRUE,
bufferDeviceAddress: VK_TRUE,
descriptorBindingUniformBufferUpdateAfterBind: VK_TRUE,
descriptorBindingSampledImageUpdateAfterBind: VK_TRUE,
descriptorBindingStorageImageUpdateAfterBind: VK_TRUE,
descriptorBindingStorageBufferUpdateAfterBind: VK_TRUE,
descriptorBindingStorageTexelBufferUpdateAfterBind: VK_TRUE,
descriptorBindingPartiallyBound: VK_TRUE,
shaderSampledImageArrayNonUniformIndexing: VK_TRUE,
shaderUniformBufferArrayNonUniformIndexing: VK_TRUE,
runtimeDescriptorArray: VK_TRUE,
storageBuffer8BitAccess: VK_TRUE,
};
VkPhysicalDeviceVulkan11Features features_11 = {
sType: VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
pNext: &features_12,
};
VkPhysicalDeviceFeatures2 features = {
sType: VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2,
pNext: &features_11,
features: {
shaderUniformBufferArrayDynamicIndexing: VK_TRUE,
shaderSampledImageArrayDynamicIndexing: VK_TRUE,
shaderStorageBufferArrayDynamicIndexing: VK_TRUE,
shaderStorageImageArrayDynamicIndexing: VK_TRUE,
samplerAnisotropy: VK_TRUE,
fragmentStoresAndAtomics: VK_TRUE,
},
};
VkDeviceCreateInfo device_info = {
sType: VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
pNext: &features,
ppEnabledExtensionNames: VK_DEVICE_EXTENSIONS.ptr,
enabledExtensionCount: cast(u32)VK_DEVICE_EXTENSIONS.length,
queueCreateInfoCount: count,
pQueueCreateInfos: queue_info.ptr,
pEnabledFeatures: null,
};
VkResult result = vkCreateDevice(physical_device, &device_info, null, &vk.device);
if(result != VK_SUCCESS)
{
Logf("vkCreateDevices failure: %s", VkResultStr(result));
}
else
{
LoadDeviceFunctions(vk);
vkGetDeviceQueue(
vk.device,
candidate.gfx_index,
0,
&candidate.gfx_queue
);
if(!candidate.single_queue)
{
vkGetDeviceQueue(
vk.device,
candidate.tfer_index,
candidate.tfer_index == candidate.gfx_index ? 1 : 0,
&candidate.tfer_queue
);
}
else
{
candidate.tfer_queue = candidate.gfx_queue;
candidate.tfer_index = candidate.gfx_index;
}
vk.physical_device = physical_device;
vk.queues = candidate;
success = true;
}
}
return success;
}
bool
CheckDeviceFeatures(VkPhysicalDevice device)
{
VkPhysicalDeviceFeatures2 features2 = { sType: VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2 };
VkPhysicalDeviceVulkan12Features features_12 = { sType: VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES };
features2.pNext = &features_12;
vkGetPhysicalDeviceFeatures2(device, &features2);
VkPhysicalDeviceFeatures features = features2.features;
bool result = true;
result &= cast(bool)features.fragmentStoresAndAtomics;
result &= cast(bool)features.shaderUniformBufferArrayDynamicIndexing;
result &= cast(bool)features.shaderSampledImageArrayDynamicIndexing;
result &= cast(bool)features.shaderStorageBufferArrayDynamicIndexing;
result &= cast(bool)features.shaderStorageImageArrayDynamicIndexing;
result &= cast(bool)features.samplerAnisotropy;
result &= cast(bool)features_12.descriptorIndexing;
result &= cast(bool)features_12.bufferDeviceAddress;
result &= cast(bool)features_12.descriptorBindingUniformBufferUpdateAfterBind;
result &= cast(bool)features_12.descriptorBindingStorageTexelBufferUpdateAfterBind;
result &= cast(bool)features_12.descriptorBindingSampledImageUpdateAfterBind;
result &= cast(bool)features_12.descriptorBindingStorageImageUpdateAfterBind;
result &= cast(bool)features_12.descriptorBindingStorageBufferUpdateAfterBind;
result &= cast(bool)features_12.descriptorBindingPartiallyBound;
result &= cast(bool)features_12.runtimeDescriptorArray;
result &= cast(bool)features_12.shaderSampledImageArrayNonUniformIndexing;
result &= cast(bool)features_12.shaderUniformBufferArrayNonUniformIndexing;
result &= cast(bool)features_12.timelineSemaphore;
result &= cast(bool)features_12.storageBuffer8BitAccess;
return result;
}
bool
CheckDeviceProperties(Arena *arena, VkPhysicalDevice device, VkSurfaceKHR surface, b32* discrete)
{
bool success = false;
VkPhysicalDeviceProperties props;
vkGetPhysicalDeviceProperties(device, &props);
if(VK_API_VERSION_MINOR(props.apiVersion) >= 3)
{
u32 ext_count;
vkEnumerateDeviceExtensionProperties(device, null, &ext_count, null);
VkExtensionProperties[] ext_props = Alloc!(VkExtensionProperties)(arena, ext_count);
vkEnumerateDeviceExtensionProperties(device, null, &ext_count, ext_props.ptr);
i32 matched = 0;
foreach(prop; ext_props)
{
foreach(ext; VK_DEVICE_EXTENSIONS)
{
if(strcmp(cast(char*)prop.extensionName, ext) == 0)
{
matched += 1;
break;
}
}
}
if(matched == VK_DEVICE_EXTENSIONS.length)
{
u32 fmt_count, present_count;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &fmt_count, null);
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &present_count, null);
*discrete = props.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU;
success = fmt_count && present_count;
}
}
return success;
}
QueueInfo
CheckQueueProperties(Arena *arena, VkPhysicalDevice device, VkSurfaceKHR surface)
{
const u32 T_BIT = VK_QUEUE_TRANSFER_BIT;
const u32 C_BIT = VK_QUEUE_COMPUTE_BIT;
const u32 G_BIT = VK_QUEUE_GRAPHICS_BIT;
const u32 S_BIT = VK_QUEUE_SPARSE_BINDING_BIT;
QueueInfo current = {
gfx_index: -1,
tfer_index: -1,
single_queue: false,
};
u32 count;
vkGetPhysicalDeviceQueueFamilyProperties(device, &count, null);
VkQueueFamilyProperties[] properties = Alloc!(VkQueueFamilyProperties)(arena, count);
vkGetPhysicalDeviceQueueFamilyProperties(device, &count, properties.ptr);
if(count == 1 && properties[0].queueCount == 1 && BitEq(properties[0].queueFlags, T_BIT | C_BIT | G_BIT))
{
current.gfx_index = current.tfer_index = 0;
current.single_queue = true;
}
else
{
bool sparse = false, tfer_only = false;
foreach(i, prop; properties)
{
b32 surface_support;
vkGetPhysicalDeviceSurfaceSupportKHR(device, cast(u32)i, surface, &surface_support);
if(current.gfx_index < 0 && surface_support && BitEq(prop.queueFlags, G_BIT))
{
current.gfx_index = cast(i32)i;
continue;
}
if(BitEq(prop.queueFlags, T_BIT | S_BIT) && !BitEq(prop.queueFlags, G_BIT | C_BIT))
{
sparse = true;
tfer_only = true;
current.tfer_index = cast(i32)i;
continue;
}
if(!(sparse && tfer_only) && BitEq(prop.queueFlags, T_BIT | S_BIT))
{
sparse = true;
current.tfer_index = cast(i32)i;
continue;
}
if(!sparse && !BitEq(prop.queueFlags, T_BIT) && BitEq(prop.queueFlags, C_BIT))
{
tfer_only = true;
current.tfer_index = cast(i32)i;
continue;
}
if(!sparse && !tfer_only && BitEq(prop.queueFlags, C_BIT))
{
current.tfer_index = cast(i32)i;
}
}
if(current.tfer_index < 0)
{
current.tfer_index = current.gfx_index;
}
}
return current;
}
pragma(inline): void
Push(Vulkan* vk, StepInitialized step)
{
Node!(SI)* node = Alloc!(Node!(SI));
node.value = step;
PushFront(&vk.cleanup_list, node, null);
}
void
DestroyRenderer(Vulkan* vk)
{
foreach(i, arena; vk.frame_arenas)
{
Free(vk.frame_arenas.ptr + i);
}
Free(&vk.arena);
}
void
Destroy(VkInstance instance)
{
if(instance)
{
vkDestroyInstance(instance, null);
}
}
void
Destroy(VkDebugUtilsMessengerEXT dbg, VkInstance instance)
{
version(VULKAN_DEBUG) if(dbg)
{
vkDestroyDebugUtilsMessengerEXT(instance, dbg, null);
}
}
void
Destroy(VkSurfaceKHR surface, VkInstance instance)
{
if(surface)
{
vkDestroySurfaceKHR(instance, surface, null);
}
}
void
Destroy(VkDevice device)
{
if(device)
{
vkDestroyDevice(device, null);
}
}
void
Destroy(VmaAllocator vma)
{
if(vma)
{
vmaDestroyAllocator(vma);
}
}
void
Destroy(VkSwapchainKHR swapchain, ImageView[] views, VkDevice device)
{
foreach(view; views)
{
if(view.view)
{
vkDestroyImageView(device, view.view, null);
}
}
if(swapchain)
{
vkDestroySwapchainKHR(device, swapchain, null);
}
}
void
Destroy(Vulkan* vk, ImageView* view)
{
if(view.view)
{
vkDestroyImageView(vk.device, view.view, null);
}
if(view.image)
{
vmaDestroyImage(vk.vma, view.image, view.alloc);
}
}
void
Destroy(VkDescriptorPool pool, VkDescriptorSetLayout[] layouts, VkPipelineLayout pipeline_layout, VkSampler sampler, VkDevice device)
{
if(sampler)
{
vkDestroySampler(device, sampler, null);
}
if(pipeline_layout)
{
vkDestroyPipelineLayout(device, pipeline_layout, null);
}
foreach(layout; layouts)
{
if(layout)
{
vkDestroyDescriptorSetLayout(device, layout, null);
}
}
if(pool)
{
vkDestroyDescriptorPool(device, pool, null);
}
}
void
DestroyFS(Vulkan* vk)
{
if(vk.imm_fence)
{
vkDestroyFence(vk.device, vk.imm_fence, null);
}
if(vk.imm_cmd)
{
vkFreeCommandBuffers(vk.device, vk.imm_pool, 1, &vk.imm_cmd);
}
if(vk.imm_pool)
{
vkDestroyCommandPool(vk.device, vk.imm_pool, null);
}
if(vk.comp_cmd)
{
vkFreeCommandBuffers(vk.device, vk.comp_cmd_pool, 1, &vk.comp_cmd);
}
if(vk.comp_cmd_pool)
{
vkDestroyCommandPool(vk.device, vk.comp_cmd_pool, null);
}
if(vk.comp_fence)
{
vkDestroyFence(vk.device, vk.comp_fence, null);
}
foreach(sem; vk.submit_sems)
{
if(sem)
{
vkDestroySemaphore(vk.device, sem, null);
}
}
foreach(i; 0 .. FRAME_OVERLAP)
{
if(vk.render_fences[i])
{
vkDestroyFence(vk.device, vk.render_fences[i], null);
}
if(vk.cmd_pools[i])
{
vkFreeCommandBuffers(vk.device, vk.cmd_pools[i], 1, &vk.cmds[i]);
}
if(vk.cmd_pools[i])
{
vkDestroyCommandPool(vk.device, vk.cmd_pools[i], null);
}
if(vk.acquire_sems[i])
{
vkDestroySemaphore(vk.device, vk.acquire_sems[i], null);
}
}
}
bool
InitInstance(Vulkan* vk)
{
Push(vk, SI.Instance);
bool success = true;
Arena* arena = &vk.frame_arenas[0];
u32 count;
vkEnumerateInstanceLayerProperties(&count, null);
VkLayerProperties[] layers = Alloc!(VkLayerProperties)(arena, count);
vkEnumerateInstanceLayerProperties(&count, layers.ptr);
foreach(i, layer; layers)
{
if(strcmp(cast(char*)&layer.layerName, "VK_LAYER_KHRONOS_validation") == 0)
{
g_VLAYER_SUPPORT = true;
break;
}
}
const char*[] instance_layers = g_VLAYER_SUPPORT && BUILD_DEBUG ? VK_INSTANCE_LAYERS_DEBUG : VK_INSTANCE_LAYERS;
const char*[] instance_ext = g_VLAYER_SUPPORT && BUILD_DEBUG ? VK_INSTANCE_EXT_DEBUG : VK_INSTANCE_EXT;
VkApplicationInfo app_info = {
sType: VK_STRUCTURE_TYPE_APPLICATION_INFO,
pApplicationName: "Video Game",
applicationVersion: VK_MAKE_API_VERSION(0, 0, 0, 1),
pEngineName: "Gears",
engineVersion: VK_MAKE_API_VERSION(0, 0, 0, 1),
apiVersion: VK_MAKE_API_VERSION(0, 1, 2, 0),
};
VkInstanceCreateInfo instance_info = {
sType: VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
pApplicationInfo: &app_info,
enabledLayerCount: cast(u32)instance_layers.length,
ppEnabledLayerNames: instance_layers.ptr,
enabledExtensionCount: cast(u32)instance_ext.length,
ppEnabledExtensionNames: instance_ext.ptr,
};
VkValidationFeatureEnableEXT validation_enable = VK_VALIDATION_FEATURE_ENABLE_DEBUG_PRINTF_EXT;
VkValidationFeaturesEXT validation_features = {
sType: VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT,
enabledValidationFeatureCount: 1,
pEnabledValidationFeatures: &validation_enable,
};
version(VULKAN_DEBUG) if(g_VLAYER_SUPPORT && g_DEBUG_PRINTF)
{
instance_info.pNext = &validation_features;
}
VkResult result = vkCreateInstance(&instance_info, null, &vk.instance);
success = VkCheck("vkCreateInstance failure", result);
return success;
}
bool
InitSurface(Vulkan* vk)
{
Push(vk, SI.Surface);
version(linux)
{
VkXcbSurfaceCreateInfoKHR surface_info = {
sType: VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR,
connection: vk.platform_handles.conn,
window: vk.platform_handles.window,
};
VkResult result = vkCreateXcbSurfaceKHR(vk.instance, &surface_info, null, &vk.surface);
}
version(Windows)
{
VkWin32SurfaceCreateInfoKHR surface_info = {
sType: VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR,
hinstance: vk.platform_handles.instance,
hwnd: vk.platform_handles.handle,
};
VkResult result = vkCreateWin32SurfaceKHR(vk.instance, &surface_info, null, &vk.surface);
}
bool success = VkCheck("InitSurface failure", result);
return success;
}
void
EnableVLayers(Vulkan* vk)
{
version (VULKAN_DEBUG)
{
Push(vk, SI.Debug);
if(g_VLAYER_SUPPORT)
{
VkDebugUtilsMessageSeverityFlagBitsEXT severity_flags = VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
if(g_DEBUG_PRINTF)
{
severity_flags |= VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT;
}
VkDebugUtilsMessengerCreateInfoEXT info = {
sType: VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT,
messageSeverity: severity_flags,
messageType: VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT,
pfnUserCallback: cast(PFN_vkDebugUtilsMessengerCallbackEXT)&DebugCallback,
};
if(g_DEBUG_PRINTF)
{
info.messageSeverity |= VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT;
}
VkResult result = vkCreateDebugUtilsMessengerEXT(vk.instance, &info, null, &vk.dbg_msg);
if(result != VK_SUCCESS)
{
Logf("EnableVLayers failed to initialize, will continue without validation: %s", VkResultStr(result));
}
}
else
{
Logf("EnableVLayers warning: Not supported on current device, continuing without");
}
}
}
void
PrintShaderDisassembly(Vulkan* vk, Pipeline pipeline_id, VkShaderStageFlagBits stage)
{
version(AMD_GPU)
{
PipelineHandles* pipeline = vk.pipeline_handles.ptr + pipeline_id;
version(VULKAN_DEBUG)
{
u64 size;
VkResult result = vkGetShaderInfoAMD(vk.device, pipeline.handle, stage, VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD, &size, null);
if(result == VK_SUCCESS)
{
u8[] buf = Alloc!(u8)(&vk.frame_arenas[vk.frame_index], size);
vkGetShaderInfoAMD(vk.device, pipeline.handle, stage, VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD, &size, buf.ptr);
Logf("DISASSEMBLY:\n%r", buf);
}
}
}
}